Experimental !

No installation

ooRexxShell - ooRexxTry.[rex|rx]]
New options

Extension of [predefined] classes
Doers & Blocks & Source transformation
Extension of message term
Abbreviated syntax of arguments list
Coactivity

Closure by value

Higher-order methods

Generators

Pipeline

Concurrency trace

Todo list...

sandbox-jIf

No installation
* http://dl.dropbox.com/u/20049088/oorexx/sandbox/index.html

* Platforms :
* Win32
e Puppy Linux (32 bits)
« Mac OS X (64 bits)

* No installation :

e Open a console
e execute setenv_oorexx (zero impact on your system)
« test...

http://dl.dropbox.com/u/20049088/oorexx/sandbox/index.html

sandbox-jIf
ooRexxShell

Try it : oorexxshell

Note : this is a small script which takes care of the reload command (lets modify the
sources, reload everything, while keeping the history of commands)

This shell supports several interpreters :

e 00oRexx itself

» the system address (cmd under Windows, bash under Linux
& Mac OS X)

 hostemu

The prompt indicates which interpreter is active.
By default the shell is in cooRexx mode.

When not in ooRexx mode, you enter raw commands that
are passed directly to the external environment.

ooRexxShell
You activate an interpreter by starting a command line with its
name.
Example (Windows) :

'dir bin | find ".dIl""
cmd dir bin | find ".dll"

you need to surround by quotes

unless you temporarily select cmd

say 1+2 3

cmd switch to the cmd interpreter
dir bin | find ".dll" raw command, no need of surrounding quotes
say 1+2

error, the ooRexx interpreter is not active here

oorexx say 1+2 you can temporarily select the ooRexx interpreter

hostemu switch to the hostemu interpreter

execio * diskr "install.txt" (finis stem in.
oorexx in.=

exit

store the contents of the file in the stem in.

temporarily switch to ooRexx to display the stem

the exit command is supported whatever the interpreter

ooRexxShell

* Preload all the packages/libraries delivered in the
snapshot.

* |f an ooRexx clause ends with "=" then the clause is
transformed to display the result :

'"1+2=' becomes 'options "NOCOMMANDS"; 1+2 ; call
dumpResult; options "COMMANDS'""'

'=" alone displays the current value of the variable RESULT.
If the variable RESULT has no value, then display [no result].

Only code executed from ooRexxShell will support this final
"=". This notation is not supported in a regular script.

ooRexxShell

You have access to Java from ooRexxShell.

props = .bsf4rexx~System.class~getProperties

enum=props~propertyNames

do while enum~hasMoreElements; key=enum~nextElement; value =
props~getProperty(key); say enquote2(key) "=" enquote2(value); end

Under Mac OS X, if you want to use awt or swing classes
then you must launch ooRexxShell like that :

rexxj2.sh SOOREXX HOME/packages/oorexxshell.rex

otherwise you will have a java.awt.HeadlessException raised.

ooRexxsShe
Example of code which depends on awt :

call bsf.importClass "java.awt. Toolkit"
toolkit = .java.awt.Toolkit~getDefaultToolkit
dimension = toolkit~getScreenSize
dimension~width=

dimension~height=

sandbox-jIf
ooRexxTry.rex (Windows only)

Try it : rexx ooRexxTry
Unlike ooRexxShell, ooRexxTry lets enter multiline code.

Unlike ooRexxShell, ooRexxTry does not remember the
assignments done in the previous run.

Same functionalities as ooRexxShell :

* Preload all the packages/libraries delivered in the snapshot.

« |If an ooRexx clause ends with "=" then the clause is
transformed to display the resuilt.

ooRexxTe Widows only)

A wide-char version of ooDialog is delivered in the
snapshot. Warning : this wide-char version is derived from an
older version of ooDialog (april 2010) and is no longer in sync

with ooDialog 4.2.0.
Try it : wchar rexx ooRexxTry

Internally, the strings are UTF-16. At the boundary of
ooDialog, the strings coming from / going to the interpreter
are converted from / to the code page specified by the
routine setCodePage.

ooRexxTry is configured to use UTF-8
(call setCodePage 65001).

In the readme.txt file, you will find the UTF-8 strings, ;
visible on next slide, ready to copy-paste in the code area.

ooRexxTry.rex

N, ooRexx] v (wide-char ooDialog)
File Edit Tools Hell

indows only

B=1E3

Greek (menotonic): Seokemadw TN WURSPESpT BRshuy i
FRussian: Chellt e eWd 3THX MATKIE QIpaHLyschis SyNoK 08 Eainel 4am.
Hebrew: 122 1w vy To0p NyIn T yiMeS ono 923 0.

Japanese (Hiragana): HEEf#lH &0 HZTEET

Yy REERD&L ADEE T -mapCirsturn argi1)~c2x™ 7

— utfd not (yet) supported by the String class:

— returns & bytes, not 8 characters, and this is displayed as 3 grap

5]

1]

5]
D D e

[FON F B P I R
tin tin

=g
i

L

return "HEEWRLEZ L RS E LS —- E3 81 82 E3 8135 E3 81 80

[

if UTF-8 was supported by the
String class, then | could write
~left(3) to have the 3 characters

[£

Says

Greek (monotonic): Seokemadw T WUxpEopa BAEAUYIT

Russian: Chellb Ke SWE STHX MATKHX DpaHLYSCHMX Gy NoK 08 BiNel Yat.

Hebrew: 122 20 v 1979 NMIN T8 VINES ONT 2 0.

Japanese (Hiragana) €&kl ZTSHT
E38182E38195E3818DE33236E3 8281 E331BFE3 8198 E33080E3

I~

[~

HeEE

Erors # Information

Code Execution Complete:

Duration: 0.031000

[]3

10

sandbox-jIf

ooRexxTry.rxj (all platforms)

e Tryit:
Under Mac OS X:
rexxj2.sh SOOREXX HOME/packages/ooRexxTry.rxj

Other platforms : rexx coRexxTry.rxj
* Preload all packages/libraries, support final "="

 |n this snapshot, java is configured to use UTF-8 as default
encoding for external strings,using this declaration in

bsf4oorexx/install/setEnvironment4BSF.cmd .

set BSF4Rexx JavaStartupOptions=-Dsun.jnu.encoding=UTF-8 -Dfile.encoding=UTF-8

11

oorexx|ry.rx] platitorms

ooRexxTry [ooRexx 4.2.0, BSF 410.20120420]

File Edit Seftings Help

Code

isay "# Greek (monotonic): Eeoxkemdaiw Tnv Wwuxoesdpa RoeAuypla”

lsay "# Russian: Ceellb ¥e el 3THX MATKMX (hpaHuyackux Oynok 43 Buinei yaw.”
Ay "# Hebrew, 110 110 Yy T977 MUan s wne? ono oo "

say “# Japanese (Hiragana). & #RH &L apsgd

say"HEEWHEL RDEET ~mapCireturn arg(1)}~c2x" "}

— utf8 not (yet) supported by the String class:

- returns @ bytes, not @ characters, and this is displayed as 3 graphemes
relum"HEERHLL RDEHE T -lef(0) -E38182E38195E3 818D

4] [»

| »

[4]

Inpurt Arguments

FY
-

[«[]

-

1 [¥] Ll [»

[4]]*

Output/Says

Greek (monotonic): Eeokemdalw Tnv Wwuxopesdpa BaeAuyuia

H# Russian: Chellb #e g 3TVX MArkMX dpaHLy3cimx Gynok 43 Buined 4aw.

H Hebrew: 122 210 yv 1979 NN ™ vIne? ono 92 .

#.Japanese (Hiragana) &£k H4&l aoded
E38182E38195E3818DE38286E38281E381BFE3B193E38080E3 8291 E381B2E38282E3819BE3819A

| »

4] [»

[4]

Errorsinformation

Code Execution Complete
Duration: 0109000
HCoactivities: 0

[»

[4]

| Run H Get History H Exit ‘

12

sandbox-If
new option NOMACROSPACE

« Each call to an external function (like SysXxx functions) triggers
a communication with the rxapi server through a socket
(QUERY_MACRO, to test if the function is defined in the

macrospace).

* This has a major impact on performance (at least on my
machine, under WinXP...)

« Example with .yield[] which calls SysGetTid() or
SysQueryProcess("TID'") at each call .

10000 calls to .yield[] with macrospace enabled :2.1312

10000 calls to .yield[] with macrospace disabled : 0.4531

JLF 2012 mar 23 : .yield[] no longer depends on SysXXX functions, now depends on .threadlLocal
(RFE 2868655) --> still faster.
| did not modify RexxDotVariable to search in .threadlLocal :
.threadLocal~myVar=1 ; .myVar=--> MYVAR (not 1)
Maybe should be done, but | find that the search made by RexxDotVariable is already slow enough.
13

new option NOMACROSPACE

The following options control the use of macrospace :

« :.options MACROSPACE
« ::options NOMACROSPACE
« options "MACROSPACE"
e options "NOMACROSPACE"

By default, the macrospace is queried, according to the
rules described in rexxref section "7.2.1 Search order”.

When using the option NOMACROSPACE, the
macrospace is not queried.

14

sandbox-If
new option NOCOMMANDS

By default, a clause consisting of an expression only is
iInterpreted as a command string.

When using the option NOCOMMANDS, the value of the
expression is stored in the variable RESULT, and not
iInterpreted as a command string.

options "NOCOMMANDS"; 1+2 ; say result

More details later, when talking about source
transformation for implicit return.

15

new option NC "OMMANLC

* The following options control the execution of commands :

.:options COMMANDS
.:options NOCOMMANDS
options "COMMANDS"
options "NOCOMMANDS"

16

sandbox-If
Extension of [predefined] classes.

~EXTENSION classname
INHERIT iclasses

opposite = .Directory~of(" quick", "slow", "lazy", ""nervous", -
"bl'OWIl", "y@llOW", "dog", "cat")

::extension Directory
::method of class

use strict arg key, value, ...

directory = .Directory~new

doi=1 to arg() by 2

directory[arg(i)] = arg(i+1)
end
return directory

The directive ::extension delegates to the methods .class~define
and .class~inherit.

The changes are allowed on predefined classes, and are
propagated to existing instances.

If the same method appears several times in a given::extension
directive, this is an error (because it's like that with ::class).

It's possible to extend a class several times in a same package.
It's possible to extend a class in different packages.

If the same method appears in several ::extension directives,
there is no error : the most recent will replace the older
(because 'define' works like that).

18

Extension of [predefied] classes.

 When the extensions of a package are installed, the
extension methods and the inherit declarations of each
::extension are processed in the order of declaration.

 Each package is installed separately, this is the standard
behaviour.

» The visibility rules for classes are also standard, nothing
special for extensions. Each package has its own visibility
on classes.

19

sandbox-jIf
Doers

* A Doer is an object which knows how to execute itself
(understands "do")

« A Doer is an abstraction of routine, method, message,
coactivity, closure.

 When used as a doer, a string is a message. This abstraction is
useful with the higher-order methods.

say "length of each word'"~mapW("length") -- 4 string "6 2 4 4"
say "length of each word"~eachW("length") -- An array [6,2,4,4]

~mapW and ~eachW are higher-order methods that will be described later.

20

Doers

 Each doer has its own "do" method, and knows what to do
with the arguments.

routine : forward message "call"

method :
use strict arg object, ...
forward to (object) message "run'" array (self, '""a", arg(2,"a'"))

string (message) :
use strict arg object, ...
forward to (object) message "'sendWith'" array (self, arg(2,"a'""))

coactivity : forward message ""resume"
closure : user-defined method

block : forward to (self~doer)
see next slide for a definition of ~doer... 21

* A DoerFactory is an object which knows how to create a
doer (understands "doer").

A doer can be created from :

« a RexxBlock : at the first call of ~doer, the interpreter may
have to parse the source and create an executable, if the
raw executable created at load-time can't be used.

This executable is cached on the RexxBlock instance, and

returned directly the next time ~doer Is called.
The raw executable can't be used when the RexxBlock's source must be

transformed. More details later.

» an executable (Routine or Method) : No cost, this is for
convenience, the doer is the executable itself.

e a wrapper of executable (Coactivity, Closure) : No cost, this
Is for convenience, the doer is the wrapper itself. 22

sandbox-jIf
Blocks (source literals)

A RexxBlock is a piece of source code surrounded by curly

brackets.
{say "hello"'}

A RexxBlock can be stored in a variable, passed as a
parameter, returned as result.

By default (no tag) the executable is a routine.

{use strict arg name, greetings; say ""hello'" name || greetings}~doer~do(''John", ", how are you ?'")
-- hello John, how are you ?

::method IS a tag to indicate that the executable must be a

method.

The first argument passed with ~do is the object, available in self.
The rest of the ~do's arguments are passed to the method as arg(1), arg(2), ...

{::method use strict arg greetings; say "hello" self || greetings}~doer~do(''John", ", how are you ?")
-- hello John, how are you ?

23

Blocks (source literals)
* Othertags:

e ::routine is a tag to indicate that the doer is a routine (this is
the default tag).

e ::coactivity is a tag to indicate that the doer must be a
coactivity (whose executable is a routine by default).

e ::routine.coactive (coactive routine) is equivalent to
..coactivity.

::method.coactive is a tag to indicate that the doer must be a
coactivity whose executable is a method.

::closure (closure by value, will be described later)
 ::closure.coactive (coactive closure, will be described later)

24

sandbox-jIf
Source transformation

Services are available for source transformation :

e to add implicit arguments declaration
« to emulate implicit return\of value

::extension String
::method upto
use strict arg upperLimit, action={arg(1
if action~hasMethod(''functionDoer'")
then doer = action~functionDoer('"'use arg item"')
else doer = action~doer
collectedItems = .array~new
do i = self to upperLimit
doer~do(i)
if var("'result") then collectedItems~append(result)
end
return collectedItems

25

Source transformation

Emulation of implicit return :

::extension RexxBlock
::method functionDoer
use strict arg clauseBefore="", clauseAfter="", object=.nil
objectSpecified = arg(3, "e") -- object explicitely passed ?
clauseBefore ||="' ; options "NOCOMMANDS"'
clauseAfter ||="'; if var("'result') then return result’
self~executable = self~sourceDoer(clauseBefore, clauseAfter, , objectSpecified, object)
return self~executable

~sourceDoer is a helper to create a doer from a source, after
transformation of the source if requested.

Possible transformations :

» Insert a clause at the begining (takes care of the expose instruction,
keep it always as first instruction).

 |nsert a clause at the end. 26

Source transformation

Implementation of the optional insertion of clause
before/after :

sourceArray = self~source -- always an array, even if empty or just one line
clauser = .Clauser~new(sourceArray)
kind = .SourceLiteralParser~kind(clauser)

-- If the clause is an "expose'’ clause then skip it (must remain the first clause, always)
if clauser~clauseAvailable then do

clause = clauser~clause

parse lower var clause word rest

if word == "expose'" & \ isAssignment(rest) then clauser~nextClause
end

-- Insert the 'clauseBefore', if any

if clauseBefore <> """ then do
if clauser~clauseAvailable then clauser~clause = clauseBefore ";'" clauser~clause
else sourceArray~append(clauseBefore)

end

-- Insert the 'clauseAfter’, if any
if clauseAfter <> "" then sourceArray~append(clauseAfter)

27

Source transformation

Helper classes .SourceLiteralParser and .Clauser defined in
trunk/interpreter/RexxClasses/Parser.orx (preloaded in rexx.img).

The class .Clauser contains a rewriting in ooRexx of the
iInterpreter tokenizer.

::method skipComment -- RexxSource::comment in interpreter/parser/scanner.cpp
-:method locateToken -- RexxSource::locate Token in interpreter/parser/scanner.cop
::method nextSpecial -- RexxSource::nextSpecial in interpreter/parser/scanner.cop
:method sourceNextToken -- RexxSource::sourceNextToken in interpreter/parser/scanner.cpp

| don't need to get ALL the tokens, | just need to skip them correctly (in particular strings
and source literal). The comments and continuation characters are also properly
supported.

The clauses are built incrementally, accumulating all the characters, except comments.
The line continuations are removed, replaced by a blank.
So a clause is always monoline, even if it's distributed on several lines in the source.

28

Source transformation

For the transformations, the clauser works directly on the source array
passed at creation. It returns only non-empty clauses (unless you modify
a clause, see below).

You can modify the source array by replacing the current clause by a
new one :

myClauser~clause = mySourceFragment

The new clause is inserted as-is and not iterated over by the clauser. Of
course, you can create a new clauser using the modified source, and
then you will iterate over your modified clauses.

While you don't call ~nextClause, ~clause will return the last assigned
value, which can be anything, like an empty string or a string containing
several clauses.

See the file Parser.orx for a detailled example.

29

sandbox-jIf
Extension of message term

Anonymous message "~()".

receiver - ()

A Pl

:symbol expression

The message name can be omitted, but the list of parameters
IS mandatory (can be empty) :

* target~()
* target~(argl, arg2, ...)
e target~~()
* target~~(argl, arg2, ...)
When the expression is evaluated, the target receives the

message "~()". .

Extension of message term

Doers : For convenience, the message "~()" forwards the message
"do" which forwards to (self~doer).

Examples :

say "length"~("John") -~ 4 ("John"~"length")
{say helloj~() - HELLO

{say arg(1)}~~("hello")~~("bye") - hello

-- bye
say 1 + {return 2 * arg(1)}~(2) +3 —-1+2%2+3=8

31

sandbox-jIf

Abbreviated syntax of arguments list

Similar to Groovy syntax for closures :
f{...} is equivalent to f({...})
f(al,a2,...){...} IS equivalent to f(al,a2,...,{...})

No space before the opening curly bracket.

Example :
run={arg(1)~()} ; run~{say hello} -- HELLO
10~times{call charout , arg(1)} -- 12345678910

4~upto(7){call charout, item}\ - 4567
-- Implicit argument

~times and ~upto are higher-order methods.

32

sandbox-jIf
Coactivity

« Emulation of coroutine, named "coactivity" to follow the ooRexx
vocabulary.

 This is not a "real" coroutine implementation, because it's based
on ooRexx threads and synchronization.

« But at least you have all the functionalities of a stackful
asymmetric coroutine (resume + yield).
For an illustration of "stackful”, see
packages/ samples/concurrency/binary tree.cls

Coroutines are a programming language concept that allows for explicit,
cooperative and stateful switching between subroutines. The advantage of
real coroutine over threads is that they do not have to be synchronized
because they pass control to each other explicitly and deterministically.

33

Coactivit

* A coactivity remembers its internal state. It can be called
several times, the execution is resumed after the last

executed .yield[].

.yield[value] is a shortcut notation for .Coactivity~yield(value) where "[]" is a
class method. Some languages like ruby or python have a yield statement
and | wanted to emulate this statement, without modifying the interpreter.

A routine-version of yield is available : "call yield value"” where value is
optional.

Why not a function yield(value) ? because no value returned. | could return a

dummy result, but then should assign it to a variable, otherwise an external
command is triggered...

34

Coactivity
Producer/consumer problems can often be implemented
elegantly with coactivities.

The consumer can pass arguments :
producerResult = aCoactivity~resume(args...)
The first resume starts the flow of execution of the producer.

.yield[result] lets the producer (aCoactivity) return an optional
result to the consumer. The producer remains in stand-by, until
the consumer resumes its execution. From here, the consumer
Is in stand-by, until the producer yields again, or terminates.

Coactivities provide an easy way to inverse recursive algorithms
into iterative ones.
See packages/ samples/concurrency/binary tree.cls

35

Coactivity
An example of coactivity implemented with a routine :

block ={ ::coactivity

say ""hello'" arg(1) || arg(2)

Jyield[]

say ""good bye'" arg(1) || arg(2)

}

block~("John", ", how are you ?") -- hello John, how are you ?
block~(""Kathie", ", see you soon.") -- good bye Kathie, see you soon.
block~(""Keith", ", bye") -- <nothing done, the coactivity is ended>

« Remember : block~(...) is equivalent to block~doer~do(...) which forwards
"resume” in the case of coactivity.

« Did you notice how the management of arguments has been adapted to
coactivities ? At each re-entry in the coactivity (i.e. after each yield), the
arguments are those passed by the client.

36

Coactivit

Special management of arguments, two methods have been
added to the class RexxContext :

~parentContext : returns the context of the immediate caller.
~"args="" . lets replace the initial array of arguments by a new one.

Excerpt from method yield of class CoactivityObj in package coactivity.cls :

-- Must unwind until we reach a context whose package is not the current package.

context = .context

currentPackage = context~package

do while context <> .nil, context~package == currentPackage -- search for the first context outside this package
context = context~parentContext -- .nil if native or top-level activation.

end

if context == .nil then raise syntax 93.900 array ('"Can't update the arguments, yield's context not found')

context~args = arguments -- assigns the arguments that the coactivity's client passed to 'resume’

37

Coactivit

An example of coactivity implemented with a method :

block = {::method.coactive

say self 'says "hello' arg(1) || arg(2)'""’

Jyield[]

say self 'says ""good bye' arg(1) || arg(2)'""

j

doer = block~doer("The boss'")
doer~(""John", ", how are you ?'") -- The boss says "hello John, how are you 2"
doer~(""Kathie'", ", see you soon.") -- The boss says ""good bye Kathie, see you soon."
doer~("Keith", ", bye") -- <nothing done, the coactivity is ended>

The object on which the method is run is passed using the ~doer method.

38

Coactivity
A coactivity supports the method ~supplier, so it can be
seen as a collection.

Unlike a collection's supplier which builds a snapshot of
the collection, a coactivity's supplier does not create a
snapshot of the values generated by the coactivity. It's a
lazy supplier, which resumes the coactivity only when
needed (i.e. when aSupplier~next is called).

When no result returned by the coactivity then the supplier
returns item=.nil and index=.nil.

A coactivity supports the method ~makeArray. The optional
count parameter gives the maximal number of items in the
array. This is not the number of resumes, which can be
greater if no result returned sometimes. 39

Coactivit

Example 1 :
¢ = {::coactivity
i=10
do forever
if i// 2 ==0 then .yield]i]
i+=1
end}
s = c~supplier -- lazy supplier
c~statusText= -- not started
s~index ":" s~item= -1:10
s~next ; s~index "':" s~item= -2:12
c~makeArray(10)= --[14,16,18,20,22,24,26,28,30,32]
s~next ; s~index ":" s~item= - 13:34
s~next ; s~index ":" s~item= - 14:36
c~makeArray(10)= - [38,40,42,44,46,48,50,52,54,56]

40

Coactivity
Example 2 :
¢ = {::coactivity

i=10

do forever

if i// 2 == 0 then .yield[i]
else .yield[] -- no returned value

i+t=1

end}
s = c~supplier -- lazy supplier
c~statusText= -- not started
s~index ":" s~item= -1:10
s~next ; s~index ":" s~item= -- The NIL object : The NIL object
c~makeArray(10)= -[12,14,16,18,20,22,24,26,28,30]
s~next ; s~index ":" s~item= -- The NIL object : The NIL object
s~next ; s~index ":" s~item= -12:32

c~makeArray(10)= - [34,36,38,40,42,44,46,48,50,52] 41

sandbox-jIf
Closure by value

A closure is an object, created from a block having one of
these tags :

e ::closure

e ::closure.coactive

A closure remembers the values of the variables defined in
the outer environment of the block.

'he behaviour of the closure is a method generated from
the block, which is attached to the closure under the name
"do". The values of the captured variables are accessible
from this method "do" using expose.

Updating a variable from the closure will have no impact
on the original context (hence the name "closure by

value"). *

Example :

range = { use arg/min, max | -- outer environment of the closure
return { ::closure expose min max
use arg num
return min <= num & num <= max

h

from5to8 = range~(5, 8)
from20to30 = range~(20, 30)

say fromS5to8~(6) -1
say fromSto8~(9) -0
say from20to30~(6) -0

say from20to30~(25) -1

43

Closure by value

A coactive closure is both a closure and a coactivity :

- as a closure, it remembers its outer environment.

- as a coactivity, it remembers its internal state.

It can be called several times, the execution is resumed after
the last .yield[]

Example :

doer = myCoactiveClosure()

say doer -- a Coactivity
say doer~executable -- a Closure

say doer~() -- 1
say doer~() -- 2

::routine myCoactiveClosure
v=1;w=2

return {::closure.coactive expose v w ; .yield|[v] ; .yield[w]}~doer 4

sandbox-jIf
Partial arguments

http://en.wikipedia.org/wiki/Partial _application

The method ~partial, available on any Doer, returns a closure
which remembers the arguments passed to it.

When this closure is called with the remaining arguments, a
whole argument array is built from both argument lists (partial
and remaining) and passed to the target of ~partial.

Example :
add10 = "+"~partial(10) ; say add10~(1) -- 11
sub10 = "-"~partial(, 10) ; say sub10~(1) ---9

45

http://en.wikipedia.org/wiki/Partial_application

sandbox-jlf
Higher-order methods

» Higher-order methods are methods which take a
DoerFactory as argument (called action), get a Doer from
it and apply this Doer on a value or a sequence of values.

 Reminder : any Doer is a DoerFactory, so you can pass a
routine, a method, a string (will be used as a message), a
RexxBlock.

 When the DoerFactory supports source transformation
then implicit arguments are added and implicit return is put
In place.
Only RexxBlock supports source transformation.

Lot of examples in packages/ samples/functional-test.rex

46

Higher-order methods
Reduce : http://en.wikipedia.org/wiki/Fold_(higher-order_function)

reduce reduceC reduceW

B 3 o ol 15 o T X....... X....
.MutableBuffer i ... X....... X....
.Collection.........¢ciiiiiiiiieiennn. D QN
.OrderedCollection.................. D QN
.Supplierttt D
.Coactivity D

* reduce : iterate over each item and combine them into one value (accu) by applying
the given action which must always return a result.
The implicit parameters are : use arg accu, item, index.
* reduceC : iterate over each character.
* reduceW : iterate over each word.
47

http://en.wikipedia.org/wiki/Fold_(higher-order_function)

123~reduceC("+")=
-- initial value is the first char (default), reduce by char, returns 6

123~reduceC(100, "+")=
-- initial value is 100, reduce by char, returns 106

"one two one three one four''~reduceW(.set~new, "put'')=
-- returns .set~of("'one’, "two", "three", "four")

The ~reduce method is available on all the collections, but only ordered
collections should be reduced using non-commutative operations.

Ex : "+" can be used on any collection, but "-" should be used only on
ordered collections.

.array~of(10, 20, 30)~reduce("+")=
-- initial value is the first item (default), returns 60

{::coactivity .yield[10]; .yield[20]; .yield[30]}~doer~reduce("+")=
-- initial value is the first item (default), returns 60

48

Higher-order methods
Map : http://en.wikipedia.org/wiki/Map_(higher-order_function)

map mapC mapW | |

mapR | | mapCR mapWR
S s s mmmooooooooooo- |====-- R R | ===
StErIng ... e e e e e e X.... X oo,
.MutableBuffer X....X...X..... X...
.Collection......... ... ieenen. D QA
.OrderedCollection................ D QO
S) o3 o 2 e =T o
B O - T e b o3 R I T

 map : iterate over each item and apply the given action which may return a result or
not. The value returned by ~map is of the same type as the self object.
The implicit parameters are : use arg item, index.
« mapC : iterate over each character.
« mapW : iterate over each word. 49
 map...R : map in-place, instead of returning a new object.

http://en.wikipedia.org/wiki/Map_(higher-order_function)

Higheord methods

A String or MutableBuffer can be filtered by ~map (when no result returned by
the given action).

A Collection can't be filtered by ~map : If the given action doesn't return a result,
then the current value is unchanged.

"abcdefghijklmnopgrstuvwxyz'' ~mapC{item~verify('aciouy')}=
-~ returns ""01110111011111011111011101"

"abcdefghijk"~mapC{index':"item" "}=
- returns ""1:a 2:b 3:c 4:d 5:e 6:f 7:g 8:h 9:1 10:j 11:k "

"one two three"~mapW/{if item~length > 3 then item}=
-- returns ""three'

set~o0f(1,2,3)~map{2¥item}= -- returns .set~of(2,4,6)

50

Higher-order methods

Each : lterator, collector.

each eachC eachW
eachI eachCI eachWI

B o ol 15 T X...... X...
.MutableBuffer i ... X...... X...
.Collection......... .0 iiineeenn.. DG
.OrderedCollection................... D QO
.Supplier e e e D QP
.Coactivity D QP

« each : iterate over each item and apply the given action which may return a result or
not. The value returned by ~each is an array of collected results, except when self is a
coactivity (in this case, the value is another coactivity, see generators).

The implicit parameters are : use arg item, index.

« eachC : iterate over each character.

« eachW : iterate over each word.

« each...I : returns an array of indexed values, where the indexed value is an array of °!
(item, index).

Higherd methods

The ~each method returns an array (except for coactivity).

If you need a result object which is of the same type as the
iterated object then use ~map.

set~of(1,2,3)~each{2*item}=
- [2)49 6]
set~o0f(1,2,3)~eachl{2*item}=
- [[2)1])[4)2])[6)311
"abcdef''~eachClitem}=

__ ['a !, ’b ', 'c ', fd', 'e ', T]

{::coactivity do i=1 to 3; .yield[i]; end}~doer~each{2*item}=
-- a Coactivity (not an array, see the section Generators)

52

Higher-order methods

Filter on any sequence, returns an array (except when self is

a coactivity, see generators) :

reject(predicate)
select(predicate)
reject rejectC rejectW
rejectIl rejectCI rejectWI
select selectC selectW
selectl selectCI selectWI
----------------------- R e L EERE
String e e e D X.....
.MutableBuffer X. ..., X.....
.Collection............ XK. ..ttt eeeineennnn
.OrderedCollection. X. it iieeeeennnn
Supplier K. .t et e e e
Coactivity %K .t e

53

Higher-order methods

Filter on ordered sequences, returns an array (except when
self is a coactivity, see generators) :

drop(count=1) dropUntil(predicate)
dropLast(count=1) dropWhile(predicate)
drop dropC dropW
dropI dropCI dropWI
dropLast dropLastC dropLastW
dropLastI dropLastCI dropLastWI
dropUntil dropUntilC dropUntilW
dropUntilI dropUntilCI dropUntilWI
dropWhile dropWhileC dropWhileW
dropWhileI dropWhileCI dropWhileWI
————————————————————————————————————— Rl R B
S o o T« T D G X.o.o.o.oo...
.MutableBuffer i il D G D, G
B O o 0 B =Y o 3«
.OrderedCollection................... D
.Supplierttt D 54
.Coactivity D

Higher-order methods

Filter on ordered sequences, returns an array (except when
self is a coactivity, see generators) :

take(count=1) until(predicate)
takeLast(count=1) while(predicate)
take takeC takeW
takeI takeCI takeWI
takelast takeLastC takeLastW
takeLastI takeLastCI takeLastWI
until untilC untilW
untilI untilCI untilWI
while whileC whileW
whilel whileCI whileWI
————————————————————————————————————— i e It
S o o T« T D G X.o.o.o.oo...
.MutableBuffer i e X oo, X........
B O 38 I =Y o i 1=
.OrderedCollection................... D
.Supplierttt D 55

e

.Coactivity

Higher-order methods
Examples of filters :
a = .array~of(11, 12, 13, 14, 15)

a~reject{item // 2 ==0}= --[11,13,15]
a~rejectli{item // 2 =—=0}= --[[11,1],[13,3],[15,5]]
a~select{item // 2 ==0}= --[12,14]

a~drop= - [12,13,14,15]
a~dropLast= - [11,12,13,14]

a~dropUntil{item == 13}= -- [14,15]
a~dropWhile{item <> 13}= -- [13,14,15]

a~take= - [11]
a~takeLast= -- [15]
a~until{item == 13}= --[11,12,13]

a~while{item <> 13}= - [11,12]

56

Repeaters

3~times=
3~times{0}=
3~times{2*¥item}=
3~times{say item}=

11~upto(13)=
11~upto(13){2*item}=
11~upto(13){say item}=

13~downto(11)=
13~downto(11){2*item}=
13~downto(11){say item}=

-- [1,2,3] because default action is {arg(l)}
--[0,0,0]

- [2,4,6]

-- empty array because no result returned

-- [11,12,13] because default action is {arg(1);}
-- [22,24,26]
-- empty array because no result returned

-- [13,12,11] because default action is {arg(1),
-- [26,24,22]

-- empty array because no result returned
57

sandbox-jIf
Generators

Generators are methods which return a coactivity.

So generators can produce a sequence of results instead
of a single value... But this is not mandatory.

The main goal of generators is to decompose an iterative
execution into a sequence of steps, separated by .yield]].
A step does not necessarily return a result. When a step is
achieved, the next one will be started only on demand.

When you pass an action to a generator, your action
should not use .yield[] because the sequencing is taken in
charge by the generator itself. Your action can return an
optional result, which will be yielded by the generator.

58

Generators

Lazy repeater ~times.generate.

« Repeat self times the given action (self is a number).
« The action is optional (by default returns the current item).

 There is a yield at each iteration.
If the action returned a value, then this value is yielded.
Otherwise no result is yielded.

 The next iteration will be executed only when requested.

¢ = 10~times.generate{say item} -- c is a coactivity

do 5 ; c~do=; end -- 5 displayed items, no yielded value
say " _____ "

¢ = 10~times.generate{say item ; item}

do 5; c~do=; end -- 5 displayed items, 5 yielded values

Other lazy repeaters : ~generate.upto, ~generate.downto 59

enerators

When applied to a coactivity, the higher-order methods act as
generators, by yielding each value one by one, instead of
returning a collection.

¢ = 20~times.generate -- a coactivity which will yield 1..20

¢ = c~select{item // 3 == 0} -- a coactivity which will yield 3 6 9 12 15 18
¢ = c~reject{item // 2 == 1} -- a coactivity which will yield 6 12 18

¢ = c~each{say "-->" item} -- a coactivity which will yield nothing

say c~statusText -- not started
do until c~isEnded
c~do --display 6 12 18
end
say c~statusText -- ended

See packages/_samples/backtrack.rex for an illustration of the intermediate steps. 60

Generators

Sometimes, you want to iterate over all the items produced by
a coactivity. In this case, use the method ~iterator which
returns a supplier specialized for iteration, where all items are
consumed in a loop.

{::coactivity do i=1 to 10; .yield[i]; end}~each{say item}=
-- return a coactivity, nothing displayed

{::coactivity do i=1 to 10; .yield[i]; end}~iterator~each{say item}=
—-display 123456789 10 and return an empty array

61

Generators

The .Generator class is a Coactivity which applies an action
to a source (any object) and yields the results one by one (if

any).
Usage :

generator = .Generator~new(source)~optionl~option2...
r1 = generator~do
r2 = generator~do

The options are :

~action(action) ~once
~allowCommands ~recursive(sub-options="")
~iterateBefore ~returnlndex

~iterateAfter ~trace

62

Generators

Class .Generator, option ~action(action) :

Specify the action (DoerFactory) from which a Doer is created. This
doer is applied on each item. The default action is {arg(1)}.

Class .Generator, option ~iterateBefore :

If the current item has the method ~supplier, then apply the doer on
each item returned by the supplier.

Class .Generator, option ~iterateAfter :

If the current result has the method ~supplier, then yield each item
returned by the supplier. In case of recursive execution, each item
is used as input value for the next recursive call.

Class .Generator, option ~once :

Remember all the processed items from the start, and process an

item only once. 0

Generators

* Class .Generator, option ~recursive(sub-options="") :

Execute the doer recursively on the returned values.
The default algorithm is depthFirst.
Sub-options can be ([<limit>|depthFirst/breadthFirst|cycles][.])*

* Class .Generator, option ~returnlndex :

Yield .array~of(item, index) instead of item alone.
If the generation is recursive then yield .array~of(item, index, depth)
where depth is the number of nested calls.

* Class .Generator, option ~trace :

Activate internal trace.

64

Generators

Convenience methods :

.Object~generate(action) : returns .Generator~new(self)~action(action)
.Object~generatel(action) : returns .Generator~new(self)~action(action)~returnlndex

String~generateC(action) : returns .Generator~new(self~makeArray(''))~action(action)
String~generateCl(action) : returns .Generator~new(self~makeArray("'))~action(action)~returnIndex
String~generateW(action) : returns .Generator~new(self~subwords)~action(action)
String~generateWl(action) : returns .Generator~new(self~subwords)~action(action)~returnlndex

.MutableBuffer~generateC(action) : returns .Generator~new(self~makeArray("'))~action(action)
.MutableBuffer~generateClI(action) : returns .Generator~new(self~makeArray(''"))~action(action)~returnlndex
.MutableBuffer~generateW(action) : returns .Generator~new(self~subwords)~action(action)
.MutableBuffer~generateWI(action) : returns .Generator~new(self~subwords)~action(action)~returnlndex

.Collection~generate(action) : returns .Generator~new(self)~iterateBefore~action(action)
.Collection~generatel(action) : returns .Generator~new(self)~iterateBefore~action(action)~returnIndex

Supplier~generate(action) : returns .Generator~new(self)~iterateBefore~action(action)
Supplier~generatel(action) : returns .Generator~new(self)~iterateBefore~action(action)~returnlndex

.Coactivity~generate(action) : returns .Generator~new(self)~iterateBefore~action(action) 65
.Coactivity~generatel(action) : returns .Generator~new(self)~iterateBefore~action(action)~returnlndex

Examples of generators :

-- Generation of all natural numbers : 1 2 3 ...

g=(0~generate{item+1}~recursive
Currently, the default depth First algorithm supports a limited amount of recursivity (around 600 levels).
Use ~recursive(""breadthFirst") if you want no limit...

-- Factorial

1~times.generate~reduce("*")=--1
2~times.generate~reduce(" *'")=-- 2
3~times.generate~reduce("*")=-- 6

-- All the files and directories in the current directory
og=file~new(".")~generate(''listFiles'")~iterateAfter~recursive

g = g~reject{item == .nil} -- listFiles returns .nil when item not a directory
g=g~take(4) -- The 4 first non .nil results returned by ~listFiles
g~iterator~each{say item}

66

Generators

Examples of generators (continued) :

-- All items in .environment
g=.environment~generate

o~()= -- The OLEObject class
g~()= -- The InvertingComparator class

-- All pairs of index,item in .environment

g=.environment~generatel

o~()=-- [(The OLEObject class),"OLEOBJECT']

o~()= -- [(The InvertingComparator class),'INVERTINGCOMPARATOR']

67

enerators

Examples of generators (continued) :
-- Illustration of depthFirst (default) vs breadthFirst

"one two three''~generateW{

if depth == 0 then item -- depth is an implicit parameter

else if item <> """ then item~substr(2)
}~recursive~makeArray=
__ ['one', 'ne', 'o r’ n’ "Wo r’ "Wo r, '0 r, n, "three r, 'hree r, "ree r, 'ee r, 'o r, n]
"one two three''~generateW{

if depth == 0 then item

else if item <> """ then item~substr(2)
}~recursive(''breadthFirst")~makeArray=

-- ['one','two’,'three’,'ne','wo’,'hree’,'e’,'o', 'ree’,"’,"","ee','e',"']

)
v

sandbox-jIf
Pipelines

Derived from samples/pipe.rex

Added new stages, indexes, dataflows, profiling.

Take profit of RexxBlocks.

» Like powershell pipes, objects are flowing through the
pipeline, not just text.

-- The 10 first files and directories in the current directory
"."~pipe(.fileTree recursive.memorize | .take 10 | .console dataflow)

-- All packages that are visible from current context
.context~package~pipe(,

.importedPackages recursive once |,

.sort {item~name} | .console {item~name})

69

Pipelines

Any object can be a source of pipe :

 When the object does not support the method ~supplier then it's
Injected as-is. The index is 1.

» A collection can be a source of pipe : each item of the collection is
injected in the pipe. The indexes are those of the collection.

» A coactivty can be a source of pipe : each yielded value is injected
In the pipe. The indexes are those returned by the coactivity
supplier.

"hello" ~pipe(.console)
--1: 'hello’

.array~of(10,20,30)~pipe(.console)
-1:10
-2:20
-3:30

70

Pipelines

A pipeStage receives a triplet (item, index, dataflow), made
available to RexxBlocks as implicit arguments.

A pipeStage applies transformations or filters on this triplet.

When a pipeStage forwards an item to a following pipeStage, it
forwards the received dataflow unchanged, unless the option
"memorize' has been used. In this case, a new datapacket is
added to the dataflow, which memorizes the produced item and
index.

The dataflow parameter lets retrieve the datapacket produced
by a previous pipeStage :

dataflow|[''tag' |~item

dataflow|["tag"|~index

where "tag" is the default name of the pipeStage, or the name
given using the option memorize."my name". 71

Pipelines

A datapacket is an array :
« array[1] : link to previous datapacket (received from previous pipeStage).

« array[2] : tag (generally the id of the pipeStage class, or "source" for the
initial datapacket).

« array[3] : index of produced item.
e array[4] : produced item.

1 2 3 4
- +-———- +-————- +-————- +
| previous | tag | index | item |
+-—— - +-———- +-————- +-————- +
A
| +-————————- +-———- +-—————- +-————- +
+--| previous | tag | index | item |
- +-———- +-—————- +-————- +

72

Pipelines

Sorting facilities :

-- Sort by item (default)

.array~of(b, a, ¢c)~pipe(.sort byltem | .console)
-2:'4"

-1:'B’

-~-3:'C'

-- Sort by index
.array~of(b, a, ¢c)~pipe(.sort bylndex | .console)
-1:'B’
-2:'A"
-3:'C'
More options available :
['ascending'|'descending’] ['case'|'caseless'] ['numeric'|'strict']
['quickSort'|'stableSort'] ['byIndex'|'byltem’|<criteria-doer>]

73

Sorting facilities :

-- Select files from the current directory, whose path contains "txt", sorted by file size.
-- The "length' message is sent to the item, the returned result is used as a key for sorting.
-- The .MessageComparator is part of rgf util2
-- http://bsf4oorexx.svn.sourceforge.net/viewvc/bsfdoorexx/trunk/bsf4oorexx.dev/information/
"."~pipe(,
fileTree recursive |,
all["txt"] caseless |,
sortWith[.MessageComparator~new(''length/N")] |,
.console {item~name '"'--> length="item~length})

-- Same as above, but simpler...
-- You can sort directly by length, no need of MessageComparator
"."~pipe(,

fileTree recursive |,

all["txt"] caseless |,

.sort numeric {item~length} |,

.console {item~name "--> length=""item~length})

74

Pipelines

.do {...} and .inject {...} pipeStages :

* .do is action-oriented, whereas .inject is function-oriented.
e .do {"echo" item} -- no implicit return, this is a command
« .inject {"echo" item} -- implicit return, commands are disabled

Options (similar to .Generate options, except those in blue)

« after : inject the input item, and then (after) inject the produced values.

» before : inject the produced value (before), and then inject the input item.
« iterateBefore

« iterateAfter

e once

* recursive[.<limit>][.breadthFirst|.depthFirst][.cycles][.memorize]]

e ftrace

75

Pipelines
.do {...} and .inject {...} pipeStages :

-- Inject two values for each item (each item of the returned collection is written in the pipe).
-- When using the "'iterateAfter" option : if the result of .inject is an object which understands
-- "supplier' then each pair (item, index) returned by the supplier is injected in the pipe.

.array~of(1,, 2, , 3)~pipe(,
.anject after {.array~of(item*10, item*20)} iterateAfter memorize |,

.console dataflow)
-- source:1,1 | inject:1,1 -- input value
-- source:1,1 | inject:1,10 -- the values produced by .inject are injected after the input value
-- source:1,1 | inject:2,20
-- source:3,2 | inject:1,2
-- source:3,2 | inject:1,20
-- source:3,2 | inject:2,40
-- source:5,3 | inject: 1,3
-- source:5,3 | inject:1,30
-- source:5,3 | inject:2,60

76

Pipelines
.do {...} and .inject {...} pipeStages :

-- Factorial, no value injected for -1
.array~of(-1,0,1,2,3,4,5, 6, 7, 8, 9)~pipe(.inject {
use arg n
if n <0 then return
if n == 0 then return 1

return n ¥ .context~executable~call(n - 1)} | .console dataflow item)
-- source:2,0 1
-- source:3,1 1
-- source:4,2 2
-- source:5,3 6
-- source:6,4 24
-- source:7,5 120
-- source:8,6 720
-- source:9,7 5040
-- source:10,8 40320
-- source:11,9 362880 77

Pipelines
.take pipeStage :

The .take pipeStage lets stop the preceding pipeStages when the
number of items to take has been reached, whatever its position in
the pipeline.

-- Display the 4 first sorted items

.array~of(5, 8, 1, 3, 6, 2)~pipe(.sort | .take 4 | .console)
-3:1

-6:2

-4:3

-1:5

-- Sort the 4 first items

.array~of(5, 8, 1, 3, 6, 2)~pipe(.take 4 | .sort | .console)

-3:1

-4:3

-1:5

-2:8 78

Pipelines

All pipeStages (the blue ones are not in pipe.rex) :

.after

.all
.append
.arraycollector
.before
.between
.bitbucket
.buffer
.changestr
.characters
.charCount
.console
.delstr
.do

.drop
.dropnull
.duplicate

.endsWith

.fanin
.fanout
.filelLines

.fileTree

.importedPackages

.pivot

.reverse

.right
.SecondaryConnector
.select

.1nject

.insert
.instanceMethods

.left
.lineCount
.lower
.merge
.methods

.notall
.overlay
.endsWith

.sort
.sortWith
.splitter

.startsWith
.stemcollector
.subClasses

.superClasses

.System

. take

.upper
.wordCount

.words

79

Pipelines
For more informations, see the files :
packages/pipeline/pipe _readme.txt : quick reference.

packages/_samples/pipe extension_test.rex : ot of examples.

packages/ samples/one-liners.rex : selection of short pipelines.

For two examples of real scripts using pipelines, see :

packages/ samples/grep sources.rex . For each source file found in the
current directory and its subdirectories (recursively), list the lines which
contain the requested string.

packages/ samples/trailing_whitespaces.rex : For each source file found in
<directory> and its subdirectories (recursively), list the lines with trailing
whitespaces and give the name of the author to blame (in the svn

sense :-). 80

sandbox-jIf
Concurrency trace

The interpreter has been modified to add thread id, activation
id, variable's dictionnary id, reserve counter and lock flag in
the lines printed by trace.

Concurrency trace is displayed only when env variable
RXTRACE CONCURRENCY=0ON

Displayed informations :

T1 SysCurrentThreadld()

Al (unsigned int)activation

V1 (activation) ? activation->getVariableDictionary() : NULL
1 (activation) ? activation->getReserveCount() : 0

* (activation & & activation->isObjectScopeLocked()) ? '*':'")

81

Concurrency trace

Traced script :

myclockl = .clock~new ; myclockl~go
myclock2 = .clock~new ; myclock2~go

::options trace i

::class clock
::method go
reply
do 2
say left(time(),8)
call syssleep(1)
end

82

Concurrency trace

Raw trace, generated by rexx :

0000eaal
0000eaal
0000eaal
0000eaal
0000£5bc
0000£5bc
0000£5bc
0000£5bc
0000eaal
0000£5bc
0000eaal
0000£5bc
0000eaal
0000£5bc
0000eaal
0000£5bc
0000£5c0
0000£5bc
0000£5c0
0000£5bc
0000£5c0
0000£5bc
14:03:38

7Teeeb758
7Teeeb758
7eef0380
7eef0380
7eef0380
7eef0380
7eef0380
7eef0380
7Teeeb758
7eef0380
7Teeeb758
7eef0380
7eef5828
7eef0380
7eef5828
7eef0380
7Teef5828
7eef0380
7Teef5828
7eef0380
7eef5828
7eef0380

00000000
00000000
Teef(04c8
Teef(04c8
Teef04c8
Teef04c8
7Teef04c8
Teef(04c8
00000000
7eef04c8
00000000
Teef(04c8
7eef5970
Teef04c8
7eef5970
Teef(04c8
7eef5970
7Teef04c8
7eef5970
Teef(04c8
7eef5970
Teef(04c8

00000

00000

00000

00001~
00001*
00001*
00001~
00001~
00000

00001~
00000

00001~
00000

00001*
00001~
00001~
00001~
00001~
00001~
00001~
00001~
00001~

2

10

11

12

10

11

*—%

>V>
>I>
*—%

>I>
* %
>L>

>>>
*—%

*—%

>V>
>E>
>I>
>A>
—%
>L>
>I>
>A>
*—%
>E>
>L>
>>>

myclockl~go
MYCLOCK1 => "a CLOCK"
Method GO with scope "CLOCK"
reply
Method GO with scope "CLOCK"
do 2
"2"
now
myclock2~go
say left(time (), 8)
MYCLOCK2 => "a CLOCK"
TIME => "14:03:38"
Method GO with scope "CLOCK"
"14:03:38"
reply
ngn
Method GO with scope "CLOCK"
"8"
do 2
LEFT => "14:03:38"
now
"14:03:38" 83

Concurrency trace

The thread id, activation id and dictionary id are pointers
written in hexadecimal, which is not very easy to read.

The script trace/tracer.rex lets :

* replace hexadecimal values by more human-readable
values like T1, A1, V1.

e generate a CSV file, for further analysis with your favorite
tool (option -csv).

Can be used as a pipe filter (reads from stdin) :
rexx my_traced script.rex 2>&1 | rexx trace/tracer

or can read from a file :

rexx trace/tracer -csv my_trace file.txt 84

oncurrency trace

Human-readable trace :

T1l Al 2 *-* myclockl~go

T1 Al >V> MYCLOCK1 => "a CLOCK"

T1l A2 V1 >I> Method GO with scope "CLOCK"
T1l A2 V1 1x 10 *-* reply

T2 A2 V1 1* >I> Method GO with scope "CLOCK"
T2 A2 V1 1* 11 *-* do 2

T2 A2 V1 1* >L> "2"

T2 A2 V1 1* >>> "2"

T1l Al 4 *-* myclock2~go

T2 A2 V1 1* 12 *-* say left(time(),8)

T1 Al >V> MYCLOCK2 => "a CLOCK"

T2 A2 V1 1* >F> TIME => "14:03:38"

T1l A3 V2 >I> Method GO with scope "CLOCK"
T2 A2 V1 1x >A> "14:03:38"

Tl A3 V2 1x 10 *-* reply

T2 A2 V1 1* >L> "g"

T3 A3 V2 1* >I> Method GO with scope "CLOCK"
T2 A2 V1 1* >A> "g"

T3 A3 V2 1x 11 *-* do 2

T2 A2 V1 1* >F> LEFT => "14:03:38"

T3 A3 V2 1* >L> "a2"

T2 A2 Vi 1% >>> "14:03:38" 85

14:03:38

Spreadsheet, using -csv option :

oncurrency trace

thread activation varDict count lock kind

T1
T1
T1
T1
T2
T2
T2
T2
T1
T2
T1
T2
T1
T2
T1
T2
T3
T2
T3
T2
T3
T2

Al
Al
A2
A2
A2
A2
A2
A2
Al
A2
Al
A2
A3
A2
A3
A2
A3
A2
A3
A2
A3
A2

Vi
Vi
Vi
Vi
Vi
Vi

Vi
Vi
V2
Vi
V2
Vi
V2
Vi
V2
Vi

V2
Vi

el e e e

L e e i e R R e

method
method
method
method
method
method

method

method
method
method
method
method
method
method
method
method
method
method

scope executable line prefix

CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO

CLOCK GO

CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO
CLOCK GO

2

10

11

12

10

11

W

EATh
el

*_k

=]
*_k
>L>
e

W

*_k

>V>
>F>
=]
>A>
*_k
>L>
=]
>A>
*_k
>F>
>L>
e

source
myclockl™go
MYCLOCK1 == "a CLOCK"
Method GO with scope "CLOCK"
reply
Method GO with scope "CLOCK"
do 2
nyn
nyn
myclock2™go
say left(time(),8)
MYCLOCKZ == "a CLOCK"
TIME == "14:03:38"
Method GO with scope "CLOCK"
"14:03:38"
reply
ngn
Method GO with scope "CLOCK"
ngn
do 2
LEFT =>"14:03:38"
nom 86
"14:03:38"

sandbox-jIf
Todo list...

[New options] Add .RexxContext~macrospace? to get the current
setting.

[New options] Add .RexxContext~commands? to get the current
setting.

[Extension] During parsing, the extensions methods of an
::extension directive are accumulated in a table. Must use an
ordered collection because the order of declaration is important.

[Extension] Forbids to replace a predefined method. The goal
Is to extend, not to alter the behavior. Maybe not so easy to
do for 'inherit'.

[Extension] Add the parameters "unlock=.false, propagate=.false"
to the methods .class~define and .class~inherit.

87

Todo list...

« [Extension] Review the extension mechanisms :

* An extension made on .Object is not available on a class. There is
a workaround in pipe_extensions.cls (extend both .Object and
.Class).

* An extension made on .Object is not available on the .nil object.
No workaround so far.

 Some classes (ex : .Stream) don't have the methods ~pipe and
~generate. Problem of propagation ?

-- Generate the list of all classes and the list of classes having the method ~pipe

allClasses = .object~generate(''subClasses')~iterateAfter~recursive~once

classesWithPipe = .object~generate(''subClasses')~iterateAfter~recursive~once~select{item~hasMethod(' pipe')}

-- Print difference between the two lists

setl = allClasses~reduce(.set~new, ''put'')

set2 = classesWithPipe~reduce(.set~new, '""put')

difference = setl~difference(set2)

difference~pipe(.sort caseless | .console item) -- why those differences ? 38

dolst...

« [Clauser] Keep the multi-line source literals as-is (multi-line), for
better error report. That makes the transformation of clauses
more difficult, since a clause can be multi-line.

Remember : a multi-line source literal is flattened only if a
transformation is made on the clause which contains it.

e [Closure] Current implementation in ooRexx code has poor
performance : .Closure~init builds a list of exposed variables
from a directory of captured variables and assign them a value
using the BIF "value'". The good approach is to replace the
RexxBlock's directory of captured variables by a closure
instance already initialised by the interpreter itself (native code).

» [Trace] trace/tracer.rex : Add support for classic trace (without
multithread infos). The CSV format can be useful for classic
trace, because each line has the name of the current

executable. 89

» [Generator] When using the option ~recursive('depthFirst'), you get
a stack overflow from around 600 recursive calls. Modify the
implementation to replace the recursion by an iteration, as done for
the option ~recursive(''breadthFirst'), which is not limited by the
ooRexx callstack size :
O~generate{item+1}~recursive(''breadthFirst')~take(100000)~takeLast~()=
--> |ast result is 100000

[Pipelines] When using .inject in depthFirst mode, you get a stack
overflow from around 600 recursive calls. Modify the implementation
to replace the recursion by an iteration, as done for .inject in
breadthFirst mode, which is not limited by the ooRexx callstack size :
1~pipe(.inject {2*item} rec.b.100000 | .take last | .console)

--> |last result is 1.99800307E+30103

90

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

