
Choosing a Command Language-
An Application-Centric Approach

Hal German
GTE

‘14

Choosing a Command Language -- An Application-Centric
Approach

Hallett German

GTE Laboratories, Incorporated.

An Introduction to this paper

For over four years, the author has
discussed a means for beginning and
intermediate command language users to
quickly choose the essential elements of
their application without using a single piece
of code. This paper is the first time the
approach has been presented to the movers
and shakers of the REXX world. It
supplements the presentation by covering
the following:

1. Why use such an approach?
2. Concepts behind the approach.
3. The approach itself
4. Conclusions
5. References

The presentation at the REXX Symposium
will provide an overview of the approach, as
well as an example of how to use, and
include other factors to consider. Handouts
can be obtained by contacting the author.

Why use such an approach?

In “the old days” it was easy. You used a
mainframe host that had one command
language and one editor (that usually had
ties to the command language). Then PCs
and UNIX systems snuck in from
somewhere and the issues became more
complex. There were more than one
command language and editor to choose
from. Programs could run on more than one
operating system (and simultaneously if
needed). Unfortunately, the theories and
software practices for command languages
were not enhanced to match the new
realities. The approach listed below is a
modest attempt to provide command
language developers a strategy to deal with
the new realities so they don’t have to say
“What do I do next?”

1 What is a command language?

Concepts behind the approach

Unfortunately, we only can briefly look at
this area. My definition of a command
language is the following:

A programming language consisting of a
series of high-level English-like
commands entered interactively (e.g., a
keyboard, mouse, or other input device)
or non-interactively (that is created with
an editors, saved in a file, and executed
in foreground or background). An
interpreter or compiler for the command
language then determines which user-
specified operating system tasks to
perform and processes them using
corresponding task values.

Whew! A real mouthful. So what does it
mean?

l Command languages are almost always
interpreted languages. (REXX is one of
the exceptions to this.)

l Command languages are usually
executed in foreground. (Again, REXX
is one of the exceptions.)

* Command languages are comprised of
English-like verbs describing the task to
perform. REXX is typical with instruc-
tion keywords like SAY and PULL.

l Command language provides a mean to
directly or indirectly access the
operating system. REXX shines in this
area with the ADDRESS instruction and
the environment model.

l Command languages offer user and
third-party extensions. For REXX this
includes functions, sub procedures, and
interfaces to external environments.

R

75

2. Identifyina the tyDes of command
languaae a@ications

In their CLIST manual, IBM talked about
three types of command language
applications. My eight years of working
with various command languages have
verified that this typology is a good
match for the type of applications found
in the real world.

These types are the following:

Front-end -- Also called “housekeeping”
applications. In this case, the command
language sets up the proper
environment for an application to
execute. This could be allocating files,
creating files, or creating environment
variables. They also can receive output
from or send input to the application. I
view the startup or login programs as a
special example of a front-end
application.

System and Utihty -- This is like front-
end command language application.
However, the emphasis is on doing
system tasks (such as backing up files)
and utility operations (Such as being a
function/sub procedure that performs a
date operation.)

Se/f-contained -- The other two types
are “blue-collar” applications. The
“white-collar” application type is the self-
contained application. It provides a
dialog with the user (usually full-screen)
while maintaining strict control over the
process.

3. The Command Language Component

The last and most important piece of the
puzzle is the command language
component. All command languages that
have examined to date have the following
components:

* Input/Output (File operations, Stack
operations, Output to the screen, Input
from the keyboard)

* Flow Control (Conditional, Loop,
Exception handling, Exit and return
codes, Array operations)

* General Features (Debugging,
Symbolic Substitution, Labels, Global
Options, Numeric format, Interpreter
Version)

* Interfaces (Internal functions, interface
to operating system and external en-
vironments)

* Built-in (Functions, and System
variables)

What the approach does is combine all
three of the above elements. First
determine your type of application, once
you know that, you know the command
language components that are usually
used by that application type.Finally look
up the commands corresponding to that
command language component. And not
a single piece of code has been yet
been written.

The approach is application-centric
because it encourages you to know your
application requirements and data as
much as possible before starting to code.

The approach

The following are the steps of the approach:

1.

2.

3.

4.

What tvbe of abblication do I have?

The three types were discussed above.

Which command lanauaae should I use?

This is discussed in the presentation.
This includes a look at the following:

l Type of data
l File type
l benchmarks
* Ease of use vs. power
* features

Which command lanauaae components
should I use?

The components were listed above.

Which command lanauaae match these
components?

This is the crucial step. Table 1 lists a
summary of the components.

R

‘76

5. Which command lanauaae comoonents
match these commands?

Space does not permit listing this step.
However, tables with this information can
be found in the references section.

6. Where can I find more about these
commands?

7. Do I need third-oartv extensions?

There are many places you can learn
about a command language command.
These include: user guides, books, on-
line references, summary references,
electronic information servers, electronic
mailing lists, user groups, and
colleagues.

Third-party extensions should be used in
the following situations:

* When portability is not a concern.

* When the third-party extension performs
an operation not found in the command
language such as network and
database operations.

* When you can afford the run-time
license costs for distributing the
extension.

l When the extension greatly enhances
the look and feel of the application.
Such as any of the “Visual REXXes.”

Conclusions

I hope that this will be of use to you the next
time that you are considering developing a
command language application. I encourage
others to look into this area.

Getting in touch with me

Hallett German
GTE Laboratories Inc
40 Sylvan Road
Waltham, Ma 02254
617-466-2290
hhgl @ .gte.com

References

German, Hallett Command Language
Cookbook, VNR 1992
[The approach is covered in detail.
Looks at many different type of REXX
implementations.]

German, Hall& OS/2 2.1 REXX
Handbook, VNR 1994
[A Rexx tutorial and the approach with
some enhancements.]

Table 1 Command Language Components
by Application Type

Front-end
- Operating System Commands
- External Interfaces
- Input/Output: File operations & Command

Line operations.
- Built-In Functions
- Flow Control: Conditional

System/Utility
- Operating System Commands
- External Commands
- Internal Commands
- Input/Output: File/Screen Operations
- Command line input
- Built-in Functions: String Operations
- Flow Control: Loops
- General: Batch Operations, Arrays

Self-contained
- External Commands
- Functions/Sub-procedures
- Input/Output: Command Line operations,

user validation
- Flow control: Multiple conditions
- Built-in Functions: Text Case & string.
- General (Interactive operations, arrays)

‘77

