
A Large Mainframe REXX
Application

Design Aspects for a Large-scale
Mainframe REXX Application

Anthony Rudd, Datev eG, Nuremberg, Germany

Anthony.Rudd@datev.de May 6, 2004

2

Background

The described large-scale REXX mainframe application was
developed in-house to provide an interactive workbench to
support the tasks performed during the program
development life cycle.

3

Statistics - size

110Messages (individual)
 2,200 60Skeletons

 50General help panels
 12,200120 (50 help)Panels
 (5,000)(57)including kernel
 12,000190Execs
 LOCsNumber

 LOCs = lines of code (including comments and blank lines)

4

Statistics – performance comparison

183,680Modular variant
115,556Programs not preloaded

 97,562Interpreted version
 95,002Compiled version
 SUs

SUs = service units (a weighted measure of resource usage)

The modular variant = no composite kernel

Programs not preloaded = programs loaded dynamically

5

Get source

Edit source

Make compile job

Execute compile job

View job output
Find errors

Test program

Save source

Promote program

Program development cycle PS, PO, HFS
LIBRARIAN GET
LIBRARIAN TSO
LIBRARIAN batch
ISPF editor
SmartEdit

TSO SUBMIT

ISPF Edit

SDSF

DebugTool
SmartTest
Job

LIBRARIAN SAVE

Proprietary system

6

The typical program development life cycle involves:

3. Retrieve the latest source program version from the archiving system (in our
case, LIBRARIAN).

4. Edit the program (ISPF or SmartEdit depending on the language, file type or
user preference).

5. Build (locate) the compilation job using appropriate procedures. These
procedures will depend on the “processors” involved (such as CICS
precompiler, DB2 preprocessor, in-house documentation system, etc.).
Customise the compilation job with the appropriate libraries (macro libraries,
copy book libraries, object (load) libraries), options (compiler, binder), etc.

6. Submit the compilation job.
7. Locate the associated job output in SDSF and check the step return codes.
8. If compilation errors occurred, look through the list for errors, note the error

and location; in a separate window, depending on the error, correct the
program, JCL, etc., and resubmit the job.

9. If the compile job completed successfully, submit an appropriate test job or
invoke an interactive debugger.

10.Depending on the outcome of the test, either continue at step 2) or store the
source in the archiving system.

11.Promote program to production (in our case, a proprietary system).

7

The large number of combinations (processors,
libraries, options, etc.) for each specific program
entry make a computer-supported system essential.

8

The host workbench is a REXX-based application that makes wide
use of ISPF (and other) components:

•Execs – processing logic, edit macros, action bar processing,
 panel exits
•Panels – general input, table display, general help
•Skeletons – job control creation, parameter files, input parameters
•Tables (temporary) – display of filtered “program” entries (project,
 last-used date, etc.), display of temporary results, profile for
 user-specific inter-session parameters
•ISPF services (ISPF editor, LM services, etc.)
•VSAM – “program” entries
•DB2 – query user-specific database information
 (such as assigned collection Ids)
•Program interfaces (SmartEdit, LIBRARIAN editor, etc.)

9

Background

Partially for historical reasons, VSAM was chosen as data storage
medium:

•An in-house REXX interface for database-like VSAM file processing
 was available

•DB2 not used because of “bureaucratic” reasons (easier to change),
 user files rather than central “file”

10

General design criteria

•User-friendliness (in the widest sense)

•Modular design

•Ease of maintenance (expandability (new compilers, changed
 libraries, etc.)).

11

Modular design

Small independent modules
 = ease of maintenance
 = massive performance penalty (approx. 1 second per module;
 an action typically requires the use of 10 modules
 = an unacceptable 10 second response time!)

Solution: combine individual modules in a monolithic module either
manually or using an in-house REXX preprocessor (#include
statements) – also as input to the REXX compiler (although only
limited performance gain because of the extensive use of external
services (principally ISPF)).

12

User-friendliness

•Integrate components required for the program development
 process (for example, allocate a library using appropriate default
 values).
•Where possible, prompt for input (reference list of most
 recently-used files, available compilers, options).
 The user should not need to know anything or should at least be
 able to obtain the required information, directly if possible.
 This requires the integration of program development tools
 (for example, selectable list of file names,
 selectable list of member names, etc.).

13

Problem:
The interfaces to such tools are often programs.
As with individual exec modules, the repeated loading (and
deletion) of programs is time consuming (use count = 0).

Solution:
Preload such programs.
The subsequent load sets the use count > 0, namely the
program will not be automatically deleted after use.

14

Ease of maintenance

Maintenance in such an application covers several facets,
 principally:

•Ease of making changes

•Ease of locating errors

15

Ease of making changes

As with most applications, the described developer's workbench will
be subject to changes.

Some changes are known in advance, in this case, different library
names, compiler options, etc. I classify such "frequent" changes as
class 1 changes.

I classify rare changes as type 2 changes. A typical type 2 change
in this application would be the addition of a new programming
language.

16

Class 1 changes

Class 1 changes are "planned" changes.

"Global variable" definitions are contained in a separate exec. All
subsequent references use the global variable names.
Furthermore, the names of the global variables are themselves
contained in a fixed global variable.

17

Definition of variables:

$vn = "$proclis $libr $ppli $ebd $cics $eyeball",
 "$pcconv $xedicnv",

 "$seconv2", /* 09.07.2003 */

 "$lked $db2bpkg", /* 02.04.2004 */
…
 "$viast",

 "$cobload cicsload asmload"

"VPUT (" $vn "$VN) SHARED"

The application execs then retrieve $VN to get the list of names,
which is then used as the subsequent input to retrieve the specific
values:

"VGET ($vn)"
"VGET ("$vn")"

This ensures that the application always has the up-to-date list of
names and values.

18

Library names use a similar scheme.

For example
cobload = 'IGY.V2R2.SIGYCOMP'

The skeletons used to generate the job control then use the
symbolic name, in this case, COBLOAD.

For example:
//CMP EXEC PGM=IGYCRCTL,REGION=20M,
// PARM=&COPT
//STEPLIB DD DSN=&cobload,DISP=SHR

Obviously, it would also be possible the parameterise the name of
the compiler. However, such changes occur so infrequently that it is
not worthwhile.

19

Class 2 changes

Class 2 changes are infrequent, "unplanned" changes.

REXX as interpretative language (together with ISPF skeletons (and
panels)) is well-suited for such changes. In the simplest case, the
name of the associated skeleton. If the "job creation engine" is
designed to process the (dynamic) list of processes, it will
automatically handle the addition of a new compiler. In the
described developer's workbench, approximately 1 hour (note: this
does not include any extensive plausibility processing that might be
required in panels).

20

An example of a compiler declaration:

$c = "STEP=CMP;SKL=SEWBC;",
 "DDIN=SYSIN;DDOUT=SYSLIN;",
 "DDLIB=SYSLIB=&ulibcmp CBC.TEST.SCLB3H.H",
 "SYS1.SCEEH.H SYS1.SEZACMAC,",
 "LKED=SYS1.SCEELKED CBC.TEST.SCLB3DLL;"

with the associated entry in the processor list:

$proclis = 'ASM $asm' 'COBOL $cob' 'C/370 $c'

This associates the C/370 programming language with the $c
compiler declaration, which in turn uses the SEWBC skeleton to
generate the compilation job.

21

Ease of debugging

An interactive system, such as the application being described, also
requires an interactive debugging capability.

Solution:
A command is provided to accept the names of the REXX execs to
be traced. These names are stored in a global (ISPF shared pool)
variable. Every REXX exec has prologue code that checks whether
its name is contained in this list. If yes, REXX TRACE is initiated,
otherwise tracing is turned off.

Disadvantage:
Only output to the screen.

22

Trace

The dynamic trace capability requires some means with which the
name of the module to be traced can be specified.
In the described application, a command. TR modulename.

Implementation: This command adds the name to a list stored as an
ISPF shared variable (<tracenam>), for example, SEWB$BO
SEWB$B1.

Each exec has a prologue that passes its name to the trace
processing function, in the application, SEWBTR.

The trace processing function then returns either the trace
activation command (for example, TRACE ?R) or a null string
depending on whether the exec name is contained in the list of
execs to be traced. This returned command is then INTERETed by
the invoking exec.

23

Typical trace output:

PROC:SEWB$BO
 1399 *-* PARSE ARG key parm
 >>> "APGM1"
 >>> " "
 1400 *-* boop = lop /* Zeilenoperation, BO, SE,... */
 >>> "BO"
 1401 *-* msg = SEWBGOUT(key)
 1425 *-* SEWBGOUT:
 1426 *-* INTERPRET SEWBTR(SEWBGOUT) /* TRACE */
 4073 *-* SEWBTR:
 4075 *-* TRACE OFF
 >>> "TRACE OFF"
 1426 *-* TRACE OFF
 >.> ""

24

Trace output, continued:

 1402 *-* IF msg = '' /* Job beendet */
 >>> "1"
 1403 *-* THEN
 - msg = BrowseOutput()
 1406 *-* BrowseOutput:
 1407 *-* /* CALL OUTTRAP msg.,,'NOCONCAT' */
 1408 *-* "VGET (boold) PROFILE"
 >>> "VGET (boold) PROFILE"
 1409 *-* IF boold <> 'O' & boop <> 'SE'
 >>> "1"
 1410 *-* THEN
 - rc = SEWB$BO2(jobid)
 5027 *-* SEWB$BO2:
 5028 *-* INTERPRET SEWBTR(SEWB$BO2) /* TRACE */
 4073 *-* SEWBTR:
 4075 *-* TRACE OFF
 >>> "TRACE OFF"
 5028 *-* TRACE OFF

25

Trace, continued

A second trace capability is a high-level trace of labels that provides
a general overview of the processing path. This capability is set
when the application is activated. The application allows the
specification of a switch that is stored as an ISPF shared variable
(<trmode>), for example, SEWB /T.

Typical high-level trace output:

TRACE:SEWB001
 207 *-* GetStorageClass:
TRACE:SEWB005
 93 *-* ReadRec:
 188 *-* SetUser:
TRACE:SEWB003
 176 *-* TABDISLoop:

26

Trace, invocation

Typical exec prologue:

/* REXX - SEWB$BO - BrowseOutput */
SEWB$BO:
 INTERPRET SEWBTR(SEWB$BO) /* TRACE */

27

Trace, implementation

/* REXX - SEWBTR - Trace */
SEWBTR:
PARSE ARG procname
ADDRESS ISPEXEC "VGET (tracenam trmode)"
IF (trmode = 1) THEN SAY 'PROC:'procname TIME('L')
IF WORDPOS(procname,tracenam) > 0 THEN DO
 SAY 'PROC:'procname
 RETURN "TRACE ?R"
END
RETURN ''

The trace processing exec (SEWBTR) handles both trace variants.

28

Summary

•REXX as interpretative language (together with ISPF services)
 made it well-suited (ideal) to this application.

•Investing time in the design phase can save (a lot of) time in the
 maintenance phase.

•Avoid repetitive loading of programs (time-intensive)
 – preload such programs.

•Loading REXX execs from a library is very time-intensive
 – pack such execs together in a kernel.

•"Nobody is perfect" – plan for errors.
 Provide troubleshooting facilities.

