
Rexx Language Association
2012 Rexx Language Symposium

Part Two: Transforming THE to be more
than JUST an editor by using Rexx macros

Les Koehler
14 May 2012

Table of Contents
Abstract

Notes about this presentation

Command recall

Executing modified Rexx code without you having to SAVE it

Coding assistance for Classic Rexx and HTML

Split screen. Both horizontal and vertical

Finding the differences between two files

File selection assistance at edit time

Selecting a file from the ring of active files being edited

Switching between a limited subset of all the files in the ring

Carrying skeleton code within a macro, instead of in a separate file

Packaging code to include a Table of Contents and origin, using 7zip

Extended Help for THE, built from the C source code. Includes a User Exit to integrate your own
macros.

Summary

Abstract
I will present more of my Rexx macros that expand the basic operations of THE from those of a
typical Eastern Orthodox Editor to a powerful tool that multiplies the productivity of the user. Last
year's presentation included some THE basics as background information before presenting the
tools. This year I will only present advanced tools. This will be a live demonstration. If time permits,
and there is interest, I will explore the coding techniques used.

Notes about this presentation
This presentation was written before the actual online demonstration given during the Symposium.

I've attempted to document the main points I want to demonstrate, both in prose and screen shots.
Of course I can't guarantee a one-for-one correlation. There may be either more or less here!

This is not an "Introduction to THE". Some of THE's basic features were presented last year and
will not be repeated.

Command recall
The ? command recalls the previous command held in the command ring buffer. Multiple question
marks will retrieve the Nth previous command and the "+" argument retrieves the next command
held in the buffer.

Unlike Xedit, in THE the buffer for holding commands is shared with all the files in the ring. This
can be a great help when making the same change, or doing the same search, to multiple files.

Since I prefer the Xedit style, I added an option flag in the smart_enter code to implement
command recall as separate macros: cmdsave and retrieve.

This allowed two other enhancements:

1. Treat each Directory as a unique file, even though they all appear to have the name:
DIR.DIR.

2. Provide a Menu option. This idea came from emails exchanged with Wesley Miller, who's an
X2 user and likes the menu that X2 presents.

The Menu option comes in two flavors:

?MN Displays a popup of saved commands to select from

?M Displays the popup and sets the internal pointer to the item selected

Now command recall not only behaves like Xedit, but also has the menu behavior similar to that of
X2.

Here is a trivial example I created in my usual playpen file so I could demonstrate the popup:

You select the command you want by using the arrow keys and then press ENTER. The command
is put in the cmdline for further editing or execution, just as though you had typed it yourself.

Currently, the number of commands saved is 10.

Executing modified Rexx code without you
having to SAVE it

RUN executes the code that you're editing, without you having to save it. You can use it to
experiment with changes to code or to simply execute some example you may have found. Output
is captured by the command:

 rexxoutput file

having been issued by the profile.

For example, here I've navigated to the ooRexx/Samples and edited qtime.rex

to add my name to the message:

After I execute the run macro, THE captures the output and shows us:

It will try to ensure that the PATH is correctly set, but some BSF4OORexx code can confuse it.

If we had added a TRACE R statement, we might see something like:

captured by THE.

If we had been doing intensive debugging, at some point we might have inserted this to execute
dumpvars.rex

Interpret dumpvars(,'edit')
Interpret edit

to see what the variables were set to:

The file created by dumpvars remains behind for later perusal and ultimately should be deleted,
either manually or using dumpvars itself.

When we're finished, we simply QQUIT from both files.

Coding assistance for Classic Rexx and
HTML

The smart_enter macro provides this support and is triggered by this definition in the defkeys
macro, which is run as part of the profile:

define enter macro smart_enter

Classic Rexx
The code generated is quite dense. That's because of my poor vision and the limited size of the
screen (26x80), as shown at the bottom of the screen.
Here's an example:

Notice that Do is on the same line to save vertical screen space and to allow the

 End

statements to undent evenly without any gaps. This provides visual confirmation that all the
matching

 End

statements are present.

Since this is a subroutine, the macro rexxfmt.the automatically indents it two characters.

smart_enter behaves much like you would expect it to, but it does not keep a history of what
you've done and try to anticipate what you want next. What it does next is based on the line where
the cursor is when the ENTER key is pressed.

Here's a summary:

• IF without a trailing DO adds a THEN if needed. If the line is continued, a line is added with
the THEN.

• IF with a THEN and no DO adds an ELSE.
• IF with a trailing DO adds a blank line and an END line, as does a leading DO.
• SELECT adds a WHEN line, an OTHERWISE and an END.
• WHEN adds another WHEN.

Of course the cursor is appropriately positioned.

How it handles a

 Select

is, perhaps, somewhat different from what you might ordinarily expect. Here are three examples to
help clarify how it behaves:

The intent, in all cases, is to reduce the chance for keying errors and to make writing the code as
easy as possible.

HTML
Currently, HTML is limited to the markup used most often, as this snippet of the actual code shows:

markup

and all that is required is to enter the character string by itself in a blank line, or to position the
cursor on the line with the

"</whatever>"

end markup to get another set of that markup.

gets special handling, since it is often repeated on the same line. As long as the sequence br
appears to be a word, it will be expanded to the correct markup.

Some examples:

table

<!-- Use VIEW to follow this link for help with html tables:
http://www.w3schools.com/tags/tag_table.asp
-->
<table width="90%" align="center">
 <tr>
 <th>

 </th>
 <th>

 </th>
 </tr>
 <tr>
 <td>

 </td>
 <td>

 </td>
 </tr>
</table>

dl

 <dl>
 <dt> ? </dt>
 <dd> ? </dd>

 </dl>

ul

h1

Although the above examples show the markup starting at the leftmost column, it will be put
wherever the triggering string is found.

Split screen. Both horizontal and vertical
The screen 2 command will split the screen into two views. By default, the arrangement is
Horizontal, but Vertical can be passed if needed.

If there are multiple files in the ring, the second (bottom/right) view will be the next file in the ring.

When there is only one file, you get two views of it that can be managed individually. You might, for
instance, explore the main line code in the top view and each subroutine (perhaps usingToSub
and RetSub) in the bottom view.

One interesting side-effect of having two views of the same file: when the all command is used in
one view, the other view will show the lines that were not selected.

Some examples:

Horizontal split of a file. The all /if/ and more /end/ commands have been used, as can be
seen in the top view. The bottom view shows the other lines.

Horizontal split showing two files: The source for this document and the directory for it.
Notice that the top view does not show the reserved function key lines.

Vertical split of the same two files. Notice the reserved function key lines.

Even though THE only handles two views, you can do some interesting things. Here my trycolors
macro is showing a list of colors and elements to select on the left side. The right side will be used
to show the result.

trycolors

Finding the differences between two files
THE provides the diff macro for finding the differences (ignoring spaces) between two files in the
ring. When it finds a difference, it exits with the current line set to the offending line. F2 can be
used to switch to the other file.

My enhanced version requires a split screen and allows two views of a single file. This would allow
you to compare two subroutines in the same file.

The macros both and other can be handy for resynchronizing the files to a common point before
running diff again.

Below I've used both to skip over the first change I made to diff and then found the second
change.

Diff of two versions of diff

File selection assistance at edit time
THE expects a fully qualified fileid when you edit a file with any of: THE, EDIT, KEDIT or XEDIT
commands. If the fileid is not found, THE will create it in the directory that THE was launched from.

To make things easier, I wrote the newfile macro, which does two things when THE thinks a file is
new:

1. Searches the list of "favorite" folders listed in getvar and edits the file if it is found.
2. Displays a popup of the "closest fits" from all the files in the favorites list.

For example, a subset of my favorites looks like this:

C:\MyTHEstuff
C:\MyTHEstuff\Symposia\Symposium_2012
C:\MyTHEstuff\Symposia\Symposium_2011
C:\MyRexxStuff
C:\MyTHEstuff\Email
C:\RexxLA2011

Instead of using the dirs macro to first navigate to the folder and make my selection from there, I
could just enter:

x rexxla_members

which is in the

C:\RexxLA2011

folder and it would automatically be found.

When an exact match isn't found, newfile does a wildcard search, sorts the result by descending
date and presents a popup to select from:

newfile: Wildcard search result when x log was entered

Selecting a file from the ring of active files
being edited

When there are a lot of files in the ring, pressing F2 to "walk the ring" to get to the one of interest
doesn't allow you to see all the files in the ring and conceptualize why you have them there.

The ringlist macro displays a popup of all the files in the ring for you to select from, navigating with
the up/down arrow keys. The format is controlled by an EDITV setting of your choice in your
profile:

 "EDITV SETL RINGLISTORDER NAME_FIRST"
 "EDITV SETL RINGLISTORDER NAME"
 "EDITV SETL RINGLISTORDER FILEID"
 "EDITV SETL RINGLISTORDER NONE"

This is a reworked version of the original Kedit code, making it compatible with THE and adding:

• NONE parameter
• abbrev? switch to abbreviate long path names if needed to reduce horizontal scrolling
• Walk around the ring to get to DIR.DIR to avoid rebuilding
• ALT count in popup so you can see if a file has been changed

ringlist with abbreviation

Switching between a limited subset of all the
files in the ring

When you have a lot of files in the ring, as seen above, and you want to concentrate your efforts on
just one or two, but perhaps another is needed for reference, the FF macro can help.

Originally written to flip-flop between two files (thus its name), it wasn't long before I realized it
should be able to do more, so now the limit is four files.

while editing a file you want it to remember, just enter
ff add
in the cmdline.

After you've done this for the files of interest, use the FF function key to flip between them.

When you enter ff ? you see:

ff help

Carrying skeleton code within a macro,
instead of in a separate file

The problem with a skeleton file is: where is it? In THE you would have to code, or issue a
command like:
 get c:\some_path\skeleton_file.rex
which means that the fileid must be configured somewhere, which means that is must be tailored,
which means instructions must be written to point the user at the configuration file so it can be
tailored.

It is often a lot easier to just imbed the skeleton in the macro that needs it. A simple example is
within smart_enter:

TABLE_HTML:
 first=thisline()+2
/*
<!-- Use VIEW to follow this link for help with html tables:
http://www.w3schools.com/tags/tag_table.asp
-->
<table width="90%" align="center">
 <tr>
 <th>

 </th>
 <th>

 </th>
 </tr>
 <tr>
 <td>

 </td>
 <td>

 </td>
 </tr>
</table>
*/
 last=thisline()-2
 'replace' sourceline(first)
 'extract /line/curline/'
 do s=first+1 to last
 'input' sourceline(s)
 end
 ':'line.1
 'cursor file' line.1+6 6
 'sos makecurr'
 call prompt ,
 'Position cursor to the "</" line and press ENTER for another pair'
return

The results of this technique were shown earlier.

The same technique can be used to initialize Rexx/THE code, thus ensuring consistency of a set of
labels, variables and subroutines that are commonly needed.

The macro newfile, which you saw earlier, does this for Rexx and THE code, initializing the header
block (which is used for Help) and including subroutines to handle parsing keyword arguments,
instead of obscure, meaningless 'switches' based on the limited capability of early pc chips and
memory limitations.

Combining this with the getvar function I presented back in December at the Rexx Symposium in
Aruba, yields the following THE code:

INIT_REXX:
 copyright_name=getvar('copyright_name')
 author=getvar('author')
 hdr=fname.1()'.'ftype.1()': See "Purpose", below'
 cpyr='Copyright (C)' Word(Date(),3) copyright_name
 notic='This is free software. See "Notice:" at the bottom of this file'
 sc='/'||'*'
 ec='*'||'/'
 'input' sc ec 'beghelp=thisline()+1' sc
 'input' hdr
 'input' cpyr
 'input' notic
 'input '
 'input Author:' author
 'input Date:' Date() Time()
 'input '
 'input Purpose:'
 'input '
 'input Syntax:'
 'input' ec
 'input endhelp=thisline()-2'
 Call skeleton
 '-/Purpose:'
 'extract /curline/'
 'cursor escreen' curline.2 Length(curline.3)+2
 'set alt 0 0'

 exists?=1
 Call next 'msg','New file boilerplate inserted. Fill in "Purpose:"',
 'and code away!'

 Return

SKELETON: is where all the subroutines are extracted from the macro and added to the new file,
using the same technique as TABLE_HTML: above.

The initial result might look like this:

newfile symposium.the

Notice that:

• The new file was placed in the folder I want it in.
• The header block has been appropriately tailored.
• The cursor is placed properly for you to enter the Purpose.
• You can see the start of the skeleton code, so all you have to do is code the details, starting

with INIT_VARS: A piece of it is shown below:

INIT_VARS:
 valids='? /? -? Help /Help -Help --Help' /* Keywords */
 abbrev='1 2 2 1 2 2 3 ' /* Minimum abbreviation */
 flags=copies('Help? ',words(valids)) /* Flag to set for keyword */
 helps=valids
 valids=valids ' ' --< Your keywords
 abbrev=abbrev ' ' --< Your abbreviations
 flags=flags ' ' --< Your flagnames
 flags=flags 'Unknown? Keyword_parms?' /* Always the last ones */

A little later in the code is where you define keywords that have parameters.

About 278 lines of commentary and code have been provided to get you started.

You saw earlier the Help for the ff macro, but I didn't show the interesting part of the source:

Purpose: Flip-flop between a selection of up to &maxsaves files in the ring.

 Syntax: &sme [Clear | Add | List | Delete]
 : &sme [&helps]
 : &sme

 If you haven't SET MACRO ON then use the command: macro &sme

 Notes: &sme manages a subset of the files in the ring to allow you to
 easily rotate through the list it maintains. It's of particular
 use when you have a lot of files in the ring but you want to
 concentrate on just a few of them without using something like
 RINGLIST all the time. Or even NEXTWINDOW, PREVWINDOW. Instead,
 just enter: &sme or put MACRO &sme on a hotkey/pfkey and use
 &sme ADD while editing a file you want &sme to keep.

The HELP subroutine will resolve all the ampersand variables. So if the macro gets renamed, the
only change necessary is the fileid near the top of the header. Also notice that the number of fileids
that can be saved is set by the variable maxsaves. If the variable is changed, the Help will still be
correct!

Packaging code to include a Table of
Contents and origin, using 7zip

The idea of "packaging" comes from my mainframe VM/CMS days. We had a PACKAGE tool that
provided an agreed-to syntax for a package header and a list of files that made up the package:

vmserve_package

Another tool, FCOPY, could compress files into a single PACKLIB file, much like any zipping tool

does on the pc.

Of course there were several tools for handling lists of files.

One of the goals I had was to make it easier for THE users to freely exchange tools amongst
themselves, limiting the need to put them in separate folders and having to update the
MACRO_PATH setting to include another folder.

An outgrowth of this idea was what I now call "Virtual Directories", which I presented in Part One in
Aruba.

Briefly, a Virtual Directory is a list of fully qualified fileids and macros that recognize it and treat it
just like it was a DIR.DIR that THE shows when you issue the dir command. For my purposes, I've
chosen a file extension (file type, as it's known in THE) of PKG, upper cased, as shown, so that it
stands out. See last year's presentation for more details.

Creating a package is as simple as:

1. Edit the file that is the main file for the package
2. Issue the

pkg =
macro to define the package fileid, including a prefix that you've already tailored. Mine, for
instance, is "LesK".

3. Navigate to the DIR of choice (or another PKG) and use
pkg add to add files to the list.

You might have created something like this:

helpx_pkg

The next thing to do is to run the
explode
macro to resolve everything. At completion, it will show you the TOC file that it created:

helpx_TOC

which contains:

• LOL - List of Lists
• LOP - List of PKG files

The LOL looks like this:

helpx_LOL

It contains a LST entry for each unique path, since 7zip uses relative paths when it builds an
archive.

The LST files themselves contain the fully qualified fileids of the files to put in the archive.

There is also a pointer back to the parent TOC file.

Here is the LOP:

helpx_LOP

which provides documentation about what PKG files are present.

You might have noticed that there is a PKG that did not appear in the original PKG file:

C:\MyTHEstuff\LesK_Package_Notes_PLEASE_READ.txt.PKG

It contains information about the packaging technique and how to take full advantage of it,
including the macros to do so. One of the macros, fix_pkg, can be tailored to fix the contents of the
PKG, TOC, LOL, LOP and LST files to match where you unzipped the package to. If a line in such
a file matches its own fileid, and some do, that line is skipped. This leaves behind a pointer to
where the file originally lived.

Another macro, addtoring, can be used to add files from a list to the ring of files being edited.

That completes gathering and resolving all the information associated with a PKG.

The next step is to build the zip file(s) with the package macro.

If the package is to be sent to another THE user, then simply enter:

package

while still in the TOC file.

If it is going to someone who doesn't need all the additional THE information, then enter:

package no

package will build the zip files and put them in the originating folders.

It will also build a file like this, for the example we've been using:

C:\MyTHEstuff\LesK_Helpx.PKG.LST.zips
=================================

C:\MyTHEstuff\LesK_Helpx.PKG.zip
C:\MyTHEstuff\THE_Source\LesK_Helpx_Source_Files.PKG.zip

This makes it easier to send the zip files to someone else, perhaps with the att macro, which
recognizes the .zips file type and attaches the files to the note when the note is sent.

Extended Help for THE, built from the C
source code. Includes a User Exit to
integrate your own macros.

Mark Hessling, author of THE, keeps the text for creating the PDF for THE in the C source code.
This makes it (relatively) easy to create an Extended Help Facility beyond what is already
available:

1. Built-in Quick Help file
2. The PDF file for THE
3. The web site provided by Franz-Josef Wirtz THE Help (3.0)

http://www.gut-wirtz.de/THE/rearranged/index.htm

All of them are helpful and each has its own advantages, but none can readily be extended to
encompass user macros or other environments. Plus, they just don't work like the flexible CMS and
Xedit Help that I'm used to.

The source code for THE is kept in individual files, which I created a PKG file for:

C:\MyTHEstuff\THE_Source\LesK_Helpx_Source_Files.PKG
C:\MyTHEstuff\THE_Source\comm1.c
C:\MyTHEstuff\THE_Source\comm2.c
C:\MyTHEstuff\THE_Source\comm3.c
C:\MyTHEstuff\THE_Source\comm4.c
C:\MyTHEstuff\THE_Source\comm5.c
C:\MyTHEstuff\THE_Source\commset1.c
C:\MyTHEstuff\THE_Source\commset2.c
C:\MyTHEstuff\THE_Source\commsos.c
C:\MyTHEstuff\THE_Source\query.c
C:\MyTHEstuff\THE_Source\appendix.1
C:\MyTHEstuff\THE_Source\appendix.2
C:\MyTHEstuff\THE_Source\appendix.3
C:\MyTHEstuff\THE_Source\appendix.4
C:\MyTHEstuff\THE_Source\appendix.7

http://www.gut-wirtz.de/THE/rearranged/index.htm

C:\MyTHEstuff\THE_Source\overview
C:\MyTHEstuff\THE_Source\glossary

For my purposes, the ones I needed were grouped into:

• Commands
• SET
• SOS
• Query/Status/Extract
• Boolean
• Other

and a matching macro was written to extract the position of the help information by searching on
the marker lines:

/*man-start**********************************
man-end**********************************/

and writing the data to
.idx
and
.txt
files, to improve interactive performance.

The .txt files are preformatted to be used as "List" files, with one line for each command, like this:

add - add blank line
alert - display a user configurable dialog box with notification
all - select and display restricted set of lines
backward - scroll backwards [n] screens
bottom - move to the bottom of the file
cancel - quit from all unaltered files in the ring
cappend - append text after column pointer

The .idx files are used as index files to the actual help prose. For example:

C:\MyTHEstuff\THE_Source\comm1.c (GET - :47 3)
C:\MyTHEstuff\THE_Source\comm1.c (GET add - :53 30)
C:\MyTHEstuff\THE_Source\comm1.c (GET alert - :133 28)
C:\MyTHEstuff\THE_Source\comm1.c (GET all - :185 36)
C:\MyTHEstuff\THE_Source\comm1.c (GET backward - :370 29)
C:\MyTHEstuff\THE_Source\comm1.c (GET bottom - :482 19)
C:\MyTHEstuff\THE_Source\comm1.c (GET cancel - :550 20)

These files are the basis for the Extended Help Facility. The same methodologies can be applied to
provide additional information, all integrated into the help command provided by THE, using the

synonym help macro helpx

command.

This tells THE to run the helpx macro when you enter the help command.

The syntax looks like this:

helpx_help

Its default Menu mode with no arguments yields:

helpx_menu

If you pass an argument, for instance:

help commands

you get:

help_commands

As you navigate the menu, your selection is shown in red. The colors, and many other settings are,
of course, configurable by editing helpx_config.rex to suit your own tastes.

The list argument, like this:

help commands list

overrides the default Menu mode to give you:

help_commands_list

After you press Enter you have a regular file that you can search, selecting a command by putting

"\" in the prefix area.

You can leave this file in the ring and always return to it using F2, ff or ringlist.

User Exit
The User Exit capability can be used to extend the Help to whatever you need. As an example, I
created this to meet my own needs:

help_user

Summary
Last year we explored these macros or features in some detail:

• SHOWS
• Favorite DIRS
• Virtual DIR
• VIEW
• SCANFILE

Now we've seen a few more of the tools that demonstrate elevating THE from the realm of
"Just an editor" to that of a "Productivity tool":

• Command recall
• Executing modified Rexx code without you having to SAVE it
• Coding assistance for Classic Rexx and HTML
• Split screen. Both horizontal and vertical

• Finding the differences between two files
• File selection assistance at edit time
• Selecting a file from the ring of active files being edited
• Switching between a limited subset of all the files in the ring
• Carrying skeleton code within a macro, instead of in a separate file
• Packaging code to include a Table of Contents and origin, using 7zip
• Extended Help for THE, built from the C source code. Includes a User Exit to integrate your

own macros.

And these are just a few of the 140 general purpose macros that I use to enhance my own
productivity!

	Table of Contents
	Abstract
	Notes about this presentation
	Command recall
	Executing modified Rexx code without you having to SAVE it
	Coding assistance for Classic Rexx and HTML
	Classic Rexx
	HTML
	table
	dl
	ul
	h1

	Split screen. Both horizontal and vertical
	Finding the differences between two files
	File selection assistance at edit time
	Selecting a file from the ring of active files being edited
	Switching between a limited subset of all the files in the ring
	Carrying skeleton code within a macro, instead of in a separate file
	Packaging code to include a Table of Contents and origin, using 7zip
	Extended Help for THE, built from the C source code. Includes a User Exit to integrate your own macros.
	User Exit

	Summary

