=
= -
—
=Z
Z

X

LANGUAGE

25th International Rexx Language Symposium, Memphis TN, 2014-05-04

Things to Do with Rexx
René Vincent Jansen
When You're on Z

Previously

+* There was EXEC2 on VM
* There was CLIST on TSO

“ But the console typewriter ran out of
&&&&ersands

“ IBM Product 1982 due to customer demand

1979, REX is born

* Yes, it is 35 years old today
* A second X was bought for one million $

* Introduced publicly in 1981, Houston, TX

It1s a high-level language

THE
* Script Rex
cripts <

The story of how a sin-
gle language answers
the question, ““Can a
young girl with no pre-
vious programming
experience find happi-
ness handling both
commercial and scien-
tific applications, with-
out resorting to an
assembler language?”’
Let's face it. The cost of
programming just keeps
going up. So for some
time to come, how well
vou do your job depends

S . L = g on how programmers like
* Scientific and Commercial Programming L oot

That’s the reason for

PIL./I, the high-level lan-

guage for both scientific

“ Without resorting to an assembler language and commercial applca-

LANGUA
* Applications

tions.

With PL/I, program-
mers don’t have to learn
other high-level lan-
guages. They can concen-
trate more on the job, less
on the language.

So think about PL/I.
Not just in terms of
training, but in terms of
the total impact it can
have on your operation.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT AB2217.TBAB.EXEC(SAY) - 01.03 Columns 00001 00080

Command ==> Scroll ===> PAGE
T TR EEEEEEEE L L TOp Of Data HEERRERRRRERIEX BRI ERE A A A A A A A A A A A A A A A A Xk Xk

000010 /* rexx */ 00001001 .
000100 1nput 00010003 .
000200 1nput 00020000 .

HEEERREREERREREEEREREEXREREEEEXRXEXXXEX Bottom Of Datq %% % % %53 3 3 3 3 3 356 36 3 3 36 306 6 3 3 36 306 o o 6 3 3 ok ok .

say date(J)

The most useful command ever: Rexx’ read-evaluate-print

C Ommand]ine S Criptin g In this case, the Julian date

ISPF Edit Macro Language

ISREDIT enables quick writing ot edit macros

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT AB2217.TBAB.EXEC(ISRDASH) - 01.03 Columns 00001 00080
Command ===> Scroll ===> PAGE

3 3 3 3 3 3 e A 3 e 3 e e e e e e e e A e e e 3¢ e e e e e e Ak Xk TOp of Data 3 3 3 3 3 3 3 A e e 3 e e e e e e e e e e e e A e A e e e e e A ek .
000100 /* Rexx */ 00010001 .
000500 /* ISRDASH Delete lines with a '-' in column 1 */ 00050000 .
000600 /* except the first '-' */ 00060000 .
000900 isredit 00090002 .
000910 "MACRO" 00091003 .
001000 "RESET EXCLUDED" 00100003 .
001100 "EXCLUDE ALL '-' 1" 00110003 .
001200 "FIND FIRST '-' 1" 00120003 .
001300 "DELETE ALL EXCLUDED" 00130003 .
001400 (0) 00140002 .

2 e e e e e e e e e e ek ke ke ko k kR kkkkkkkE* Bottom of Dat g %% %% % % % 3 3 3 3 e e e e 0 0 0 0 0 0 ke 0 20 ke 0 ke 0 ke ok ok % .

An example isredit macro in Rexx

Note the “address isredit” to set the environment

Write an ISPFE application in Rexx

“ ISPF shares its variable pool with Rexx: A Rexx ISPF application has “nothing
to declare”

“ Define your panels using GML or just the old fashioned way

“ Implement the logic in Rexx

DB2

* Can execute SQL and make complete applications
* Stored procedures
* DB2 command procedures

* Formatting traces

Supported DB2 statements

123 SIGNAL ON ERROR

CALL

CLOSE

CONNECT

DECLARE CURSOR

DESCRIBE prepared statement or table
DESCRIBE CURSOR

DESCRIBE INPUT

DESCRIBE PROCEDURE

EXECUTE

EXECUTE IMMEDIATE

FETCH

OPEN

PREPARE

RELEASE connection

SET CONNECTION

SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET

SET host-variable = CURRENT DATE

SET host-variable = CURRENT DEGREE
SET host-variable = CURRENT MEMBER
SET host-variable = CURRENT PACKAGESET
SET host-variable = CURRENT PATH

SET host-variable = CURRENT SERVER
SET host-variable = CURRENT SQLID

SET host-variable = CURRENT TIME

SET host-variable = CURRENT TIMESTAMP
SET host-variable = CURRENT TIMEZONE

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

SELECT_STMT ='SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), 3
' SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * ',
' DECIMAL((SALARY/?),82)) 2
'"FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE!,
"WHERE EMPPROJACT.PROJNO = PROJECT.PROJNO AND ;
' EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND 2
' PRENDATE >? 3
'GROUP BY EMPPROJACT.PROJNO, PROJNAME v
'ORDER BY 1 '
EXECSQL,
'"PREPARE S3 FROM :SELECT_STMT'
11EXECSQL,
'DECLARE C2 CURSOR FOR S3'
EXECSQL,
'OPEN C2 USING :WORK_DAYS, :RAISE_DATE'

/* Handle the FETCH errors and warnings inline */
SIGNAL OFF ERROR

[* Fetch all of the rows */
DO UNTIL (SQLCODE <> 0)
12EXECSQL,
'FETCH C2 INTO :RPT2.PROJNO, :RPT2.PROJNAME, ',
! :RPT2.EMPCOUNT, :RPT2.TOTAL_COST"'

[* Process any errors that may have occurred. Continue so that */
[* we close the cursor for any warnings. =
IF SQLCODE < 0 THEN

SIGNAL ERROR

[* Stop the loop when we hit the EOF. Don't try to print out the */
[* fetched values. =
IF SQLCODE =100 THEN

LEAVE

[* Print out the fetched row */
SAY RPT2.PROJNO"' 'RPT2.PROJNAME"' ',
RPT2.EMPCOUNT' 'RPT2.TOTAL_COST
END;

EXECSQL,
'CLOSE C2'

Format DB2 1races

Start a monitor trace

Dest OPX
format an IFCA block

000100 /* rexx */

000102
000103
000104
000105
000106
0001907
000110
000200
000400
000500
000600
000700
000800
000900
001000
001400
001500
001600
001610

= callifi('-stop trace(mon)

= callifi('-start trace(mon) class(1l)

10

ifiread

callifi:

(Cmd,2) — Mmym & r19ht(cmd,2) - Mrumn

cmd =

(Cmd,2) o mmunwn &

cmd =

command =

ifca
ifca
ifca

cmd

(cmd, 2,

(cmd, 3,

("COMMAND",1,18," ")

ifca

(cmd)-2)

")
dest(opx)')

(Cmd’2) — nynun

(cmd)-4)

('00'x,1,180,'00"'x)
(ifca),2),1fca,1+0)
("IFCA",ifca,4+1)

(

(

00010004
00010207
00010307
000104907
00010507
00010607
00010707
00011007
00020004
00040004
00050004
00060004
00070004
00080004
00090004
00100004
00140004
00150004
00160004
00161004

Format DB2 traces (continued

rtrnareasize = 262144 /*1048572*/

use linkpgm to call the db2
attachment facility

001700
001800
001900
002000
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
0033109
003500
003600
003700
004200
004300
004400
004500
004600
004700
004900
005000

rtrnarea =

output
buffer

Wrc =
rtrn=
reas=
totlen =

'returncode
'reasoncode
'output

)
ifiread:
totlen

reads =

(

(" "’1’16’" ")

(rtrnareasize+4,4)

(' ',rtrnareasize,' ')

(cmd)+4,2)!11'0000"'x! 'cmd

linkpgm "dsnwli2 command ifca rtrnarea output™

((ifca,12+1,4))

(c2d(
(

(rtrnarea)

(

("READS',1,8)

(ifca,16+1,4)))
(ifca,20+1,4))

rtrn
reas
output

ifca

(ifca,20+1,4))

rtrnarea = '00001004°'x!!

ifcidarea = '0006000000el’ x

retcd =

reascd =

'returncode
'reasoncode

0

REEEEEEREEREEREREREEEEEEEEEEEEEEEEEE RAn M O

(' ',40906)

Linkpgm "dsnwli2 reads ifca rtrnarea ifcidarea™

C
(c2d(

(rtrnarea)

(ifca,13,4))

(ifca,17,4)))

retcd
reascd

00170004
00180004
00190004
00200004
00240004
00250004
00260004
00270004
00280004
00290004
00300004
00310004
00320004
00330007
00331007
00350007
00360007
00370007
00420007
00430007
00440007
00450007
00460007
00470007
00490005
00500007

Nata **FEEEERERERRRREREREREREEEEEEEEEE R X%

DB2 - El Cheapo Lock Monitor

EDIT AB2217.TBAB.EXECCLOCKMON) - 01.23

Columns 00001 00080

Command ==> Scroll ===> PAGE
3 3 3 2 3 3 e 2 3 e e 2 e 3¢ e e e 3¢ A e e A e e e e e e A e e Ak k Top of Data 3 2 e 3 3 e e 2 A e e e e e e e e e A e e e e e e e e e e e e Ak kg
000010 /* rexx */ 00001013
000100 "Lockmon running' O 00010000
000200 input 00020000
000400 data = start 00040000
000700 data 00070003
000800 data subsystem database interval 00080003
001300 1=0 1000 00130005
}]f 001310 N TN 00131023
001400 Oo":" ('L 00140022
T 15 aCtually Worked 001401 "-dis db("database™) locks 1imit(99999)" 00140121
001402 "END" 00140220
: 001403 n 00140320
001404 x (outlines.) 00140420
SOlved d 1nas ty tlmeOUt 001410 TSO "dsn system("subsystem™)" 00141017

00142020
00143020
00144020

001420 x ("off")
001430 1i=1 outlines.®
outlines.1i

[t was the first day on the job s

001450
001510
001520
001600

sleep 10

00145020
00151007
00152023
00160004

e 20 20 20 e e e e e e e e e e ek ke ke ke ke ok ok ok kkkkkkk* Bottom of Dat g %% %% %% % 3% 3% o o 3 o o o o o o 3 3 o o o o o o o o o ok ok %k

CIGS

* Make complete applications in Rexx
"CICS XCTL PROGRAM ('PGMA') COMMAREA (COMA) "

Systems Programming Language

/* REXX */

ascb = C2D(Storage(224,4))

assb = C2D(Storage(D2X(ascb+336),4))
jsab = C2D(Storage(D2X(assb+168),4))
jbnm = Storage(D2X(jsab+28),8)

jbid = Storage(D2X(jsab+20),8)

usid = Storage(D2X(jsab+44),8)

Say 'JOBNAME='jbnm' JOBID='jbid' USERID='usid

System Rexx

+ Since z/OS 1.09

+ Automate all console commands

“ See the 2010 symposium materials

NetView Rexx

“ This is here for a long time already

* Take care of monitoring and network automation

T'he Rexx Compiler

* Delivers performance benefits
* Provides CEXEC modules for the Rexx environment

* Provides native z/OS load modules to be linked with other programs

JCL Replacement

“ Fred Brooks called JCL the worst language 1 b e

2280 W) 13
DL wiAI P ATwry v
- i tan

ever designed and has stated he is sorry it . e e
happened on his watch i

* True JCL opponents could rewrite most of
the jobs in Rexx; this is very seldom seen

* ADDRESS LINKMVS is your main tool
here

Calling DESORT

* As an example, call a sort from a Rexx exec without using JCL

"FREE FI(SYSOUT SORTIN SORTOUT SYSIN)"
"ALLOC FI(SYSOUT) DAC()"
"ALLOC FI(SORTIN) DA('Y897797.INS1') REUSE"
"ALLOC FI(SORTOUT) DA('Y897797.0UTS1') REUSE"
"ALLOC FI(SYSIN) DA('Y897797.SORT.STMTS') SHR REUSE"
ADDRESS LINKMVS ICEMAN
+ Here are the DFSORT control statements that might appear in the Y897797.SORT.STMTS data set:

SORT FIELDS=(5,4,CH,A)
INCLUDE COND=(21,3,SS,EQ,C'L92,]82,M72')

+the DFSort Manual calls this a “Rexx CLIST”

Calling ICETOOL

» "FREE FI(TOOLMSG DFSMSG VLR LENDIST TOOLIN)"

= "ALLOC FI(TOOLMSG) DA(®)"

+ "ALLOC FI(DFSMSG) DUMMY"

+ "ALLOC FI(VLR) DA('Y897797.VARIN') REUSE"

+ "ALLOC FI(LENDIST) DA()"

+ "ALLOC FI(TOOLIN) DA('Y897797.TOOLIN.STMTS') SHR REUSE"

+ ADDRESS LINKMVS ICETOOL

“Here are the ICETOOL statements that might appear in the Y897797. TOOLIN.STMTS data set:

+ OCCURS FROM(VLR) LIST(LENDIST) -

* TITLECLENGTH DISTRIBUTION REPORT') BLANK -

- HEADER('LENGTH') HEADER('NUMBER OF RECORDYS') -
* ON(VLEN) ON(VALCNT)

Scripting your apps

* In order to make your application scriptable, you define Rexx function
packages that execute code in your application

* This interface is highly standardized and exhaustively documented

+ Its is usual to define these in Assembler but C can also be used

Calling Rexx from COBOL

procedure division.
000-do-main-logic.
display "PROGRAM COBPRG - Beginning''
display "Return code before call is "' RETURN-CODE.

* Pass the procedure parm HELLO to IRXJCL.
* Pass 3 to REXX procedure '"HELLO'.

Set the size of the argument.

move "HELLO 3" to ARG-CHAR.

move 8 to arg-size.

* Call "IRXJCL" in order to execute the REXX procedure
move "IRXJCL" to PGM-NAME.

CALL PGM-NAME USING ARGUMENT.

Display the return code.

display '"Return code after call is " RETURN-CODE.
display "PROGRAM COBPRG - Normal end".

stop run.

Calling Rexx from PL/1

FETCH IRXEXEGC;
CALL IRXEXEC(EXECBLK_PTR,
ARGTABLE_PTR,
flags,
INSTBLK_PTR,
reserved_parmb5,
EVALBLK_PTR,
reserved_workarea_ptr,
reserved_userfield_ptr,
reserved_envblock_ptr,
REXX_return_code_ptr);
/* Handle the return code. */
RETURN_CODE = PLIRETYV;
PUT SKIP EDIT (' RETURN CODE:', RETURN_CODE) (A, F(4));
PUT SKIP EDIT ('REXX RETURN CODE: "', REXX_RETURN_CODE) (A, F(4));
PUT SKIP EDIT ('REXX RESULTIS: ' | |
SUBSTR(EVALBLK_EVDATA,1,EVALBLK_EVLEN)) (A);
PUT SKIP EDIT ('"End of PLIPROG') (A);
RETURN;

END PLIPROG;

This is an impression of the main call; there is some DCL overhead needed

/0OC and 1ts Rexx interface

“ Zap-o-com is a 3270 (+5250+Unix) emulator and as such is on-topic for this
talk

+ It has a well maintained Rexx interface that enables use of ooRexx and

Regina
“ It is highly recommended (I have no stake in it, it is from a German company

“ All emulator actions can be scripted

Using Unix System Services with Rexx

* Ever tried to make an exec sleep for 10 seconds?

* This is how it is done the easy way:

* ADDRESS SYSCALL

"Sleep" 10

Of course, z/0OS 1s UNIX

...and has been a looong time ...

* Young persons: read right to left

z/OS

MASTER CATALOG -=

UNIX System Services
» ROOT

ALIAS IBMUSER

/

USER -
CATALOG

» USER DIRECTORY
/u/ibmuser

» /u/ibmuser/c/

DSN=IBMUSER.C -
PDS

DSN=IBMUSER.C(PGMA) =

__IBMUSER__

FILE1 FILE2 FILES
SEQ PDS VSAM

FILE3
FILE4

RECFM. BLKSIZE.
TYPE OF DATA SET

» /u/ibmuser/c/pgma

/u/ibmtger

/ \

file1 /ﬁle2/\ file5
file3 filed

Organization provided
y the application

Figure 2-12 Comparison of MVS data set and file system files

Wait, does it have Stream-107?

* Of course, it has them, the UNIX way

[t is ironic that this environment has these calls, years after they did not made
the source-freeze when Rexx went to Endicott

“ Let us look a bit deeper into this very modern way to write Rexx on z/OS

Classic Rexx into the 21st Century

7/ OS Unix adds three
environments to ADDRESS

SYSCALL - for, erm, System Calls
SH - The Unix Shell

TSO - The (very non-optional) Time Sharing Option

File System Considerations

* A Rexx program that is invoked from a z/QOS shell or from a program must
be a text file or a compiled Rexx program that resides in the z/OS Unix file
system

“ It must be readable and writeable

* CEXEC output can be executed in the z/OS shell environment. The
catalogued procedure REXXOEC can be used to compile and OCOPY the

program to the Unix filesystem in one go

SYSCALL can be run from TSO/E or Unix Shell

“ start program with syscall(‘on’)

* ensures that ADDRESS syscall isenabled

“ ensures that the address space is a process (this is called ‘dubbing’)
* initializes the Rexx variables in the initial variable pool

“ sets the process signal mask to block all blockable signals

* clears the argc and argv variables

The SH environment

For a REXX program with syscall commands that will be
run from a z/OS shell or from a program, SH is the initial
host environment. The SYSCALL environment is
automatically initialized as well, so you do not need to
begin the REXX program with a syscalls("ON’) call.

Syscall commands within the REXX program (for
example, chmod) are interpreted as z/OS shell
commands, not as syscall commands.

Using external functions and subroutines

* The search path for subroutines and external functions is similar to that for a Rexx program
that is used from a z/OS shell or a program

* The PATH variable is used to locate programs that are called by only using the file name
“ For executable programs, LPA, link list and STEPLIB are searched

« If the name contains special or lowercase characters, quotes must be used

* ans="myfunc’(p1,p2)

* QOtherwise, the name is folded to uppercase

* Only interpreted Rexx programs are found in the z/OS Unix filesystem, other languages and
compiled Rexx is not found in the filesystem (but is found in STEPLIB or LPA, link list)

The TSO environment

A REXX program can run TSO/E commands, but you cannot use TSO commands to
affect your REXX environment, or have REXX statements or other host command
environments atfect your TSO process.

Commands that are addressed to TSO will be run in a TMP running in a separate
address space and process from your REXX program.

The TSO process is started when the first TSO command is run, and persists until
your REXX program terminates or you run the TSO LOGOFF command.

ADDRESS TS50

* The TSO command environment can be used from a z/OS Unix Rexx

environment, and is initialized with:
+ address tso [command]

* where [command] may be any TSO command, clist, exec that can run in a
TSO batch tmp

* the started program can be observed with ps as process bpxwrtso

1'SO Input

* Most TSO programs use TGET for input and will fail

* For commands that are able to read input, first data is what is on the stack,
and then any data that is in your Rexx exec’s standard input stream

“ The standard input stream may also be queued as part of the input stream

For example, if you have a file redirected as input and you run a TSO command before processing that file, some or all of the
file may be queued to the TSO command. If input is the terminal, queued input may be queued to the TSO command.

This characteristic can be used to interact with some TSO commands.

15O Output

* The standard output stream of the Rexx exec will be used

* The outtrap() function can be used to store output in a variable

1'SO Examples

To run the TSO/E TIME command:

address tso ‘time’
To trap command output and print it:

call outtrap out.
address tso 'listc’
do 1=1 to out.0
say out.1 end

To run a REXX exec in TSO/E:

address tso
"alloc fi(sysexec) da(’schoen.rexx’) shr"
"myexec”

Variable Scope

When the REXX program is initialized and the SYSCALL environment is
established, the predefined variables are set up. If you call an internal
subroutine that uses the PROCEDURE instruction to protect existing
variables by making them unknown to that subroutine (or function), the
predefined variables also become unknown. If some of the predefined
variables are needed, you can either list them on the PROCEDURE
EXPOSE instruction or issue another syscalls(’ON’) to reestablish the
predefined variables. The predefined variables are automatically set up for
external functions and subroutines. For example:

subroutine: procedure
junk = syscallsCON’)
parse arg dir

‘readdir (dir) dir. stem.’

Running Rexx in z/0S Unix from a C program

#pragma strings(readonly) /* if stdin or stdout are not open you might want to open file */ /* load routines
#include <stdlib.h> /¥ descriptors 0 and 1 here */ 11'XJCl=(EXTF fetch("IRXJCL
?nciuge <St1crli'ng}.1h> /* if no environ, probably tso or batch - make one */ e

Iinclude <stdio.h> i iron==
typedef int EXTF(): :efn(veilrlc\:rllf(nchai\]gkgizﬂioc (8): Chapter 2. z/OS UNIX REXX programming services 17
#pragma linkage(EXTF,0S) environ[0]="PATH=."; %/
int main(int argc, char **argv) { environ[1]=NULL;
extern char **environ; 1. bpxwrbld=(EXTF *)fetch("BPXWRBLD ");
EXTF *irxjcl; TSR, %/ /* build the REXX environment g
EXTF *bpxwrbld; /% set PATH to cwd % rcinit=bpxwrbld(rxwork,
/* access environ variables */ /¥ env terminator */ arge.argv,
/* pointer to IRXJCL routine */ /* need to build the environment in the same format as expected by */ i environlp environ
/* pointer to BPXWRBLD routine */ /* the exec() callable service. See &p,envb)° ’ ’
/* addr of REXX environment ~ */ /* Assembler Callable Services for UNIX System Services. - C A ’
s hy . ; : if (rcinit!=0) {

p /* the environ array must always end with a NULL element printf("environment create failed re=%d\n" rcinit);
/* return code o) * o5
/* ptr to env length pointers */ % 5 2
;: I())t]gtlc\)/[e\l;g :;I\l]g\t::rk area*/ %/ %/ /* if you need to add subcommands or functions to the environment, */
e e o e : : : : /* or create a new environment inheriting the current one, this is */
s for (i=0:environ[i]!=NULL:i++); /* the place to do it. The user field in the environment is used */
s : environlp=(int **)malloc(i*4+4); /* by the z/OS UNIX REXX support and must be preserved.
int LA : environl=(int *)malloc(i*4+4); /* run exec
!ong*l::mlt', . for (j=0;j<1;j++) { rxparm=(struct s_rxparm *)malloc(strlen(execname)+
¥nt enylronlp, environlp[j]=&environl[j]; strlen(execparm)+
Hlllt *envn'oknl; : environl[j]=strlen(environ[j])+1; sizeof(struct s_rxparm));
zh:i :‘);\))(V:gna[;r?e(:)—o"()e]);ecname"' }s memset(rxparm->name, ’,sizeof(rxparm->name));
= = : Lo £ /* count vars memcpy(rxparm->name execname,strlen(execname));

char *execparm="exec parameter string"; /* parm to exec / /% get array for len ptrs */ rxparm->space="";
Sm}llCt :Trxparm { /* get words for len vals */ memcpy(rxparm->text,execparm,i=strlen(execparm));

z hZi nZ;Ill’e[3] /* point to len i rxparm->len=sizeof(rxparm->name)+sizeof(rxparm->space)+i;

’ /* set len word = return irxjcl(rxparm);

char space; /* null entry atend ~ */)

char text[253]; %/

} *rxparm; environlp[j]=NULL; 1
/* parm to IRXJCL) £,

environl[j]=0;
/* halfword length of parm */

/* area to hold exec name */
/* one space o
/* big area for exec parm &

For example, to define your external functions for an application support package

chmod

assume that pathname was assigned a value earlier
In the exec. This example changes the mode of the
fille to read-write-execute for the owner, and read-
execute for all others:

"chmod (pathname) 755"

Rexx 1/0 Functions

* lineout() and charout()

* linein() and charin()

+ stream()

* streams can be opened implicitly and explicitly

FExample Rexx 1/0 Functions

This example opens a stream for the file mydata.txt:
file=stream(’mydata.txt’,’c’, ’open write’)

This example opens a stream for the file mydata.txt, but replaces the file if it exists:
file=stream(’mydata.txt’,’'c’, ’open write replace’)

To read the next 256 characters:
say charin(file,,256)

To set the read location to the sixth 80-byte record:
call charin file,5*%*80+1,0

Submita Job to JES2

do 1=1 by 1 while lines(fn)>0
fn.1=11nein(fn)
end
fn.0=1-1
say submit(’fn.’)

BPXWDYN, interface to dynamic allocation

This example allocates SYS1.MACLIB to SYSLIB and directs messages to z/OS UNIX standard error (sdterr):

call bpxwdyn "alloc fi(syslib) da(sysl.maclib) shr msg(2)”

This example requests that the name of the data set allocated to ddname SYSLIB be returned in the REXX variable dsnvar.
call bpxwdyn "info fi(syslib) inrtdsn(dsnvar)"

This example frees SYSLIB and traps messages in stem S99MSG.:
call bpxwdyn "free fi(syslib)"

This example concatenates SYS1.SBPXEXEC to SYSPROC:

1t bpxwdyn("alloc fi1(tmp) da(sysl.sbpxexec) shr msg(2)")=0 then
call bpxwdyn "concat ddlist(sysproc,tmp) msg(2)"

Rexx for the 2 1st Century

“ Pervasive on z/OS
* Support for USS

+ Reuse these interfaces for ooRexx on z/OS

