
Vienna University of Economics and Business

Institute for Management Information Systems

Course 0208, Projektseminar aus Wirtschaftsinformatik (Schiseminar)

D-Bus Language Binding for ooRexx: An
Introduction on Nutshell Examples

Richard Lagler, 1152821

Supervisor: ao. Univ.Prof. Mag. Dr. Rony G. Flatscher

February 20, 2015

Declaration of Authorship

"I do solemnly declare that I have written the presented research thesis by myself
without undue help from a second person others and without using such tools other
than that specified.

Where I have used thoughts from external sources, directly or indirectly, published or
unpublished, this is always clearly attributed.

Furthermore, I certify that this research thesis or any part of it has not been previously
submitted for a degree or any other qualification at the Vienna University of Economics
and Business or any other institution in Austria or abroad."

Date:

Signature:

CONTENTS Page i

Contents

1 Introduction 1
1.1 History . 2
1.2 Open Object Rexx . 2
1.3 Language Bindings . 3

2 Overview of D-Bus 4
2.1 Buses . 4
2.2 Addresses . 4
2.3 Signature Strings . 5
2.4 Exchange of Messages . 5
2.5 Interfaces . 6

2.5.1 Introspect Member . 6
2.5.2 Get & Set Members . 6
2.5.3 D-Bus Message Daemon . 7
2.5.4 Private D-Bus Server . 7

3 Language Bindings 9
3.1 ooRexx . 9

3.1.1 Setup . 9
3.1.2 ooRexx Class "DBus": Getting a Connection 10
3.1.3 Hello from D-Bus with ooRexx 10
3.1.4 Remote Service Objects . 11
3.1.5 Listener for D-Bus Signals . 12

3.2 Python . 13
3.3 Java . 13

4 Exploring D-Bus-Services 14
4.1 D-Bus On-the-Fly-Documentation "dbusdoc.rex" 14
4.2 D-Feet . 15
4.3 qdbusviewer . 16

5 Nutshell Examples 18
5.1 A Powermode-Activity . 18
5.2 A Screenprotector . 20
5.3 A Klipper Listener . 21
5.4 A Bluetooth Listener . 23
5.5 A Kopete Listener . 26
5.6 Client-/Server-Communication . 28

CONTENTS Page ii

6 Roundup and Outlook 33

References 34

LISTINGS Page iii

List of Figures

1 A Hello World from ooRexx with Method Message 11
2 On-the-Fly-Documentation "dbusdoc.rex" 15
3 D-Feet on System Bus "org.freedesktop.UDisks2" 16
4 qdbusviewer on Session Bus "org.mpris.MediaPlayer2.Player" 17
5 Concept of Nutshell Examples . 18
6 A Powermode-Activity . 19
7 A Klipper Notification . 21
8 A Klipper Signal . 22
9 A Bluetooth Notification . 24
10 A Bluetooth Signal . 24
11 A Kopete Action on VLC Signal . 26
12 A Server Listening . 29
13 A Client Accessing . 29

List of Tables

1 Signature Strings . 5
2 Interface: "org.freedesktop.DBus.Introspectable" 6
3 Interface: "org.freedesktop.DBus.Properties" 7
4 D-Bus Members . 7

Listings

1 helloworld.rex . 11
2 helloworldrso.rex . 12
3 signalListener.rex . 12
4 powermode.rex . 19
5 createpassword.rex . 20
6 screenprotector.rex . 20
7 klipperListener.rex . 22
8 bluetoothListener.rex . 24
9 kopeteListener.rex . 27
10 rexxServer.rex . 29
11 rexxClient.rex . 31

1 INTRODUCTION Page 1

Abstract

"D-Bus is a message bus system, a simple way for applications to talk to one
another. In addition to interprocess communication, D-Bus helps coordinating pro-
cess lifecycle; it makes it simple and reliable to code a "single instance" application
or daemon, and to launch applications and daemons on demand when their ser-
vices are needed."[see FreeD14a] In order to do so the paper first introduces the
D-Bus concepts and demonstrates the language binding for ooRexx. Based on
nutshell examples the current approaches are demonstrated and should enable
ooRexx programmers to use it for their work.

Key words: D-Bus, Open Object Rexx (ooRexx), Freedesktop, language bind-
ing, Linux, bus, messaging

1 Introduction

"D-Bus is being used on Linux systems for kernel programs to communicate with other
parts of the Linux system and to emit signals for further controls. These particular
communications are taking place over a D-Bus "system" message daemon ("system
bus") that gets started when Linux boots." [see Flat11, I] In addition, whenever a user
logs into a Linux system and thereby starts a new session a separated bus "session"
message daemon ("session bus") gets started. This D-Bus allows any application in
the user’s session to interact with each other which means some remote controlling
action. [see Flat11, I]

Via a D-Bus connection, every application can provide services which can get ac-
cessed from another application. Transported object types get coded from their native
implementation to the bus specification, routed through the bus to a specific receiver.
As a consequence the user can hand over commands containing different objects using
ooRexx which may enhance the remote controlled applications’ action.[see FreeD14b]

This article is structured such that it gives first an introduction to D-Bus methodology
scripted with ooRexx and continues with investigations on common known applications
e.g. VideoLAN Player, Kopete and Bluetooth. Nutshell examples are structured based
on its complexity whether signals are only sent or additionally interpreted. Complemen-
tary, the last example concludes with an ooRexx D-Bus server which provides methods
via the session bus and listens continuously.

1 INTRODUCTION Page 2

1.1 History

"D-Bus was first built to replace the CORBA-like component model underlying the
GNOME desktop environment. Similar to DCOP (which is used by KDE), D-Bus is
set to become a standard component of the major free desktop environments for
GNU/Linux and other platforms. A GNOME environment normally runs two kinds of
buses: a single system bus for miscellaneous system-wide communication, e.g. no-
tifications when a new piece of hardware is hooked up; and a session bus used by a
single user’s ongoing GNOME session. A session bus normally carries traffic under
only a single user identity, but D-Bus is aware of user identities and does support flex-
ible authentication mechanisms and access controls. The system bus may see traffic
from and to any number of user identities". [see FreeD14b]

1.2 Open Object Rexx

"The scripting language "Open Object Rexx (ooRexx)" is an object-oriented exten-
sion of the REXX scripting language, which was intentionally designed as a "human-
oriented" language. A brief overview of its history and features is given. The language
can be briefly characterized as:

• an interpreted language,

• having an easy, pseudo-code like syntax,

• being dynamically typed (REXX: "everything is a string", ooRexx: "everything is
an object"),

• caseless (everything outside of quotes gets uppercased by the interpreter be-
fore execution), possessing an explicit message operator, the tilde (∼); left of the
tilde is the receiving object, right of it the method name and, optionally (in round
brackets) the arguments supplied with the message,

• drawing concepts from Smalltalk,

• possessing an easy to use, yet powerful C++ API.

ooRexx was originally developed by IBM which handed over its source-code to the non-
profit special interest group "Rexx Language Association (RexxLA)" for opensourcing
and further developing the language." [see Flat11, 8]

1 INTRODUCTION Page 3

1.3 Language Bindings

"Application Programming Interfaces for D-Bus, or bindings, are available in several
languages; typically one per language, but not necessarily. Each presents its own API
as suits the language, hiding the details of working with D-Bus from the programmer to
different extents. The ideal is to fit the D-Bus API into the native language and libraries
as naturally as possible." [see FreeD14b] Using D-Bus should feel more like object-
oriented programming than like communication. In some bindings, a programmer may
hardly notice that D-Bus is there at all.

When it comes to explanations on nutshell examples it will be proved how straightfor-
ward D-Bus objects can be used with ooRexx. The binding works as a native conjunc-
tion to D-Bus what creates the feeling to deal with ooRexx objects only.

"When that happens, a program that uses D-Bus to communicate will for the most part
look as if the counterparts it communicates with were regular components (libraries,
modules, packages, objects, functions; whatever the language uses) of the program
itself. This is also why some aspects of D-Bus that may seem very basic can differ
greatly depending on programming language." [see FreeD14b]

2 OVERVIEW OF D-BUS Page 4

2 Overview of D-Bus

In this chapter an introduction on the infrastructure of D-Bus is given.

2.1 Buses

"There are two major components to D-Bus: a point-to-point communication "dbus"
library, which in theory could be used by any two processes in order to exchange
messages among themselves; and a "dbus" daemon. The daemon runs an actual
bus, a kind of "street" that messages are transported over, and to which any number
of processes may be connected at any given time. Those processes connect to the
daemon using the library, and it probably wouldn’t make much sense to use the library
for anything else." [see FreeD14b]

Applications can either be called by their unique name representation (for example:
35-731) or with a name (e.g. org.kde.KTextEditor). A program can request any name
to be easily identifiable if the name is not already registered. [see Marg11, 10]

2.2 Addresses

"Every bus has an address describing how to connect to it. A bus address will typi-
cally be the filename of a Unix-domain socket such as "/tmp/.hiddensocket," but it may
also be a TCP port where a bus daemon is listening on an IP-domain socket." [see
FreeD14b]

All methods that are made available through the D-Bus have to be specified in inter-
faces which means a developer has to define interfaces’ addresses. Since program-
mers can choose the applications’ names he or she can also register an appropriate
path/address to the application based on its complexity and structure.

"From a functional standpoint, the primary purpose of object paths is simply to be
a unique identifier for an object. The "hierarchy" implied the path structure is al-
most purely conventional. Applications with a naturally hierarchical structure will likely
take advantage of this feature while others may choose to ignore it completely." [see
FreeD14b]

2 OVERVIEW OF D-BUS Page 5

2.3 Signature Strings

"D-Bus uses a string-based type encoding mechanism called signatures to describe
the number and types of arguments requried by methods and signals. Signatures are
used for interface declaration/documentation, data marshalling, and validity checking.
Their string encoding uses a simple, though expressive, format and a basic under-
standing of it is required for effective D-Bus use. The table below lists the fundamental
types and their encoding characters." [see FreeD14b]

Data Type Type Indicator Comment
array a If sequence of ’a’s, then each ’a’ stands for one di-

mension, followed by the element type indicator of the
array.

boolean b ’0’ (false) or ’1’ (true)
byte y 8-bit unsigned integer
double d IEEE 754 double
int16 n 16-bit signed integer
int32 i 32-bit signed integer
int64 x 64-bit signed integer
objpath o Must start with a slash (/).
signature g May consist of type indicators only.
string s Must be encoded as modified UTF-8.0
uint16 q 16-bit unsigned integer
uint32 u 32-bit unsigned integer
uint64 t 64-bit unsigned integer
unix_fd h Available only, if using Unix socket transportation.
variant v A container type which includes the signature of the

encoded value.
structure (..) A container type. Parentheses may contain any types.
map/dict a{s..} A container type. Map/dictionary, index is always a

string, value can be of any type.

Table 1: Signature Strings
[see Flat11, 4]

2.4 Exchange of Messages

As introduced a D-Bus message daemon allows any processes to send each other
messages. The broker receives and forwards messages where D-Bus provides the
communication infrastructure (The broker is the D-Bus message daemon). A message
could be addressed via its well-known bus name "org.freedesktop.DBus"; in order to
exchange messages, a process needs to tell the broker the destination address. [see
Flat11, 5] See also chapter 2.2 for details on addresses.

2 OVERVIEW OF D-BUS Page 6

2.5 Interfaces

"D-Bus interfaces define the methods and signals supported by D-Bus objects. In order
to make use of a D-Bus interface it must be known to remote users. This interface
definition may be hard coded into an application or may be queried at run time through
the D-Bus introspection mechanism." [see FreeD14b]

For instance, the standard Introspection interface is
"org.freedesktop.DBus.Introspectable".

Methods may accept any number of arguments and may return any number of return
values, including none. Methods and properties can be designed with the help of
signature strings but are strictly structured as described. [see FreeD14b]

2.5.1 Introspect Member

With the help of the Introspection interface an XML encoded string can be submitted
in order to publish interface names and all their members which can be of type method,
signal or property.

Returns Message Type Member Name
s method Introspect()

Table 2: Interface: "org.freedesktop.DBus.Introspectable"
[see Flat11, 6]

Types of the arguments of methods, signals or properties are encoded with indicators
given in table 1 where methods that do not return any value will document this with
an empty string as their signature. Signals, being one-way (broadcast) messages may
carry arguments, but will never return a value. [see Flat11, 6]

2.5.2 Get & Set Members

To access properties, getter and setter methods are provided in interface
"org.freedesktop.DBus.Properties" as shown in table 3.

2 OVERVIEW OF D-BUS Page 7

Returns Message Type Member Name
v method Get(ss)

method Set(ssv)
a{sv} method GetAll(s)

Table 3: Interface: "org.freedesktop.DBus.Properties"
[see Flat11, 7]

2.5.3 D-Bus Message Daemon

As introduced the message broker owns the bus named "org.freedesktop.DBus". Us-
ing the Introspect member, a returned string describes all published interfaces and their
members listed in table 4

Returnse Message Type Member Name
method AddMatch(s)

ay method GetAdtAuditSessionData(s)
ay method GetConnectionSELinuxSecurityContext(s)
u method GetConnectionUnixProcessID(s)
u method GetConnectionUnixUser(s)
s method GetId()
s method GetNameOwner(s)
s method Hello()
as method ListActivatableNames()
as method ListNames()
as method ListQueuedOwners(s)
b method NameHasOwner(s)
u method ReleaseName(s)

method ReloadConfig()
method RemoveMatch(s)

u method RequestName(su)
u method StartServiceByName(su)

method UpdateActivationEnvironment(ass)
signal NameAcquired(s)
signal NameLost(s)
signal NameOwnerChanged(sss)

Table 4: D-Bus Members
[see Flat11, 7]

2.5.4 Private D-Bus Server

"The D-Bus interprocess communication infrastructure allows programmers to use the
infrastructure without the help of a D-Bus message daemon. Such servers are called

2 OVERVIEW OF D-BUS Page 8

private D-Bus servers. This allows for simple client/server applications where any pro-
cess having a connection to the private D-Bus server can communicate with it using
D-Bus messages." [see Flat11, 8]

3 LANGUAGE BINDINGS Page 9

3 Language Bindings

"In computing, a binding from a programming language to a library or operating system
service is an application programming interface (API) providing glue code to use that
library or service in a particular programming language." [see Wiki14] There are many
bindings available for D-Bus; the most common known are: Python, Java, Qt4, Perl,
C++, PHP, .NET, Ruby and ooRexx. Since the paper focuses on the ooRexx language
binding only a short introduction on other solutions is given.

3.1 ooRexx

This chapter introduces the setup of the language binding for ooRexx.

3.1.1 Setup

In this article all nutshell examples are developed in a Linux environment, Kubuntu
14.10.

If you do not already use a Linux operating system or you do not know what distri-
bution to choose, you might look up additional information about the Linux flavors on
http://distrowatch.com/ and on the distributions homepage respectively. [see Marg11,
19]

As D-Bus and ooRexx are also available for Windows, you can give it a try for testing
purposes only.

Firstly, Open Object Rexx 4.2.0 or higher has to be installed downloadable at
http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/

Secondly, DBus4ooRexx has to be installed. The language binding for ooRexx can be
downloaded at:

• DBus4ooRexx Download:
https://sourceforge.net/projects/bsf4oorexx/files/GA/sandbox/dbusoorexx/

• DBus4ooRexx Source Code:
https://sourceforge.net/p/bsf4oorexx/code/HEAD/tree/sandbox/rgf/misc/dbusoorexx/

• 32- and 64-Bit DBus for Windows (for testing purposes only)
http://wi.wu.ac.at/rgf/rexx/orx22/work/

3 LANGUAGE BINDINGS Page 10

In order to run the nutshell examples successfully the following applications have to be
installed manually:

• Bluetooth driver and connection manager

• Kopete

• VideoLAN Player

3.1.2 ooRexx Class "DBus": Getting a Connection

In order to establish a connection the ooRexx class DBus has to be used named
"dbus.cls".

The class methods connect and new allow creating a new D-Bus connection by giving
an address to connect to. Additionally the class methods system and session can be
used as well as shown:

• new(server_address | "system" | "session")

• connect(server_address | "system" | "session")

• system

• session

To send messages from ooRexx the method message must be used where its first ar-
gument can be either call or signal. [see Flat11, 10]

"The method listener allows to add or remove an ooRexx listener object, as well as
getting a list of currently registered ooRexx listener objects. An ooRexx listener object
gets wrapped up and stored in a "DBusListener" object.

The method serviceObject allows to add or remove an ooRexx service object, as well
as getting a list of currently registered ooRexx service objects.

The method busName allows to request and to release the ownership of a bus name."
[see Flat11, 10]

3.1.3 Hello from D-Bus with ooRexx

Traditionally, the first example will be a Hello World script where the method message in
listing 1 on bus "org.freedesktop.Notifications" is used. The notification in figure 1

3 LANGUAGE BINDINGS Page 11

is displayed.

Figure 1: A Hello World from ooRexx with Method Message

1 conn=.dbus~session /* get connection to the session message bus */

2
3 /* define message arguments */

4 busName ="org.freedesktop.Notifications"

5 objectName ="/org/freedesktop/Notifications"

6 interfaceName ="org.freedesktop.Notifications"

7 memberName ="Notify"

8 replySignature="u" /* uint32 */

9 argSignature ="susssasa{sv}i"

10 /* string, uint32, string, string, string, array of string, dict of variants, int3 */

11
12 id=conn~message("call",busName,objectName,interfaceName,memberName, -

13 replySignature,argSignature,"An ooRexx App", , -

14 "oorexx", "ooRexx Demo", "Hello, my beloved world!", , , -1)

15
16 ::requires "dbus.cls" /* get DBus support */

Listing 1: helloworld.rex

3.1.4 Remote Service Objects

As introduced in chapter 1 the language binding follows the human orientation of
ooRexx. With the help of ooRexx D-Bus proxy the supplementation of correct sig-
natures will work automatically by using remote objects.

Additionally, properties can also be used as native ooRexx attributes rather than inves-
tigating the "org.freedesktop.Properties" interface all the time.

The class DBusProxyObject automatically introspects remote objects and uses its inter-
face definition. When developers send messages to the remote D-Bus service object,
no type information needs to be supplied as this is already known by the proxy object.

Remote objects can be accessed with the method getObject(busName, ObjectPath).
[see Flat11, 12]

In listing 2 the Hello World notification is displayed with the help of the ooRexx remote

3 LANGUAGE BINDINGS Page 12

service object and method notify. [see Flat11, 13]

1 /* get access to remote object */

2 o=.dbus~session~getObject("org.freedesktop.Notifications","/org/freedesktop/Notifications")

3 id=o~notify("An ooRexx App", , "oorexx", "ooRexx Demo", "Hello, my beloved world!", , , -1)

4
5 ::requires "dbus.cls" /* get DBus support */

Listing 2: helloworldrso.rex

3.1.5 Listener for D-Bus Signals

The class DBusListenerObject is a wrapper class which stores the ooRexx object to
which signal messages should get forwarded to (attribute listenerObject). Addition-
ally, it allows storing an interface name (attribute interface) and/or a signal name
(attribute signalName), which can be used for additional filters.

The method listener in class DBus wraps an ooRexx listener object in an instance
of the DBusListenerObject class. Listing 3 depicts an ooRexx programm, which con-
nects to the session message daemon and adds an ooRexx listener object (method
listener). The D-Bus broker will forward all signal messages (method match with
argument type="signal") which enables a discovering service for all messages broad-
casted via the session bus daemon on the command line. [see Flat11, 14]

1 signal on halt /* intercept ctl-c (jump to label ’halt:’ below) */

2
3 conn=.dbus~session /* get the "session" connection */

4 conn~listener("add", .rexxSignalListener~new) /* add the Rexx listener object */

5 conn~match("add", "type=’signal’", .true) /* ask for any signal message */

6
7 say "Hit enter to stop listener..."

8 parse pull answer /* wait for pressing enter */

9 halt: /* a label for a halt condition (ctl-c) */

10 say "closing connection."

11
12 conn~close /* close connection, stops message loop */

13
14 ::requires "dbus.cls" /* get dbus support for ooRexx */

15
16 ::class RexxSignalListener /* just dump all signals/events we receive */

17 ::method unknown /* this method intercepts all unknown messages */

18 use arg methName, methArgs

19 slotDir=methArgs[methArgs~size] /* last argument is slotDir */

3 LANGUAGE BINDINGS Page 13

20 say "-->" pp(slotDir~messageTypeName) pp(slotDir~interface) -

21 pp(slotDir~member)", nrArgs="methArgs~items-1

22
23
24
25 do i=1 to methArgs~items-1

26 say " argument #" i":" pp(methArgs[i])

27 end

28
29 say "-"~copies(79)

30
31 ::method NameOwnerChanged /* demo how to directly intercept a signal */

32 use arg name, old, new, slotDir

33 say "==> NameOwnerChanged:" "Name:" pp(name)", OldOwner:" pp(old))) -

34 ", NewOwner:" pp(new)

35 say "-"~copies(79)

36
37 ::routine pp /* "pretty print": enclose string value with square brackets */

38 parse arg value

39 return "["value"]"

Listing 3: signalListener.rex

In Chapter 5 some nutshells examples are provided to view the output of the ooRexx
listener and how it can be used to react on specific signals. The listener enables actions
based on conditions which can be somehow useful in production environments.

3.2 Python

The Python binding can be installed using the dbus-python package downloadable at
D-Bus-Python Download:
http://dbus.freedesktop.org/releases/dbus-python/

3.3 Java

The Java language binding is named dbus-java and is currently available at version
2.7.
D-Bus-Java Download:
http://dbus.freedesktop.org/releases/dbus-java/dbus-java-2.7.tar.gz

There is also a well-structured documentation available at:
http://dbus.freedesktop.org/doc/dbus-java/dbus-java/.

4 EXPLORING D-BUS-SERVICES Page 14

4 Exploring D-Bus-Services

Communication through the buses can be monitored with the help of the tool qdbus-
monitor issued in a command line. As a result, messages are listed with information
about sender and receiver (if any). Due to the amount of information while using the
system it might be quite stressful to analyse information coming from the tool. However,
it is possible.

There are different approaches available to consult D-Bus interfaces, also with a graph-
ical user interface, for instance D-Feet and qdbusviewer. [see Marg11, 13 f.]

Since it seems to be quite hard to research documentation manually the ooRexx lan-
guage binding comes along with the tool "dbusdoc.rex" which generates a nice to view
documentation with HTML.

4.1 D-Bus On-the-Fly-Documentation "dbusdoc.rex"

Although it is possible to research some D-Bus interfaces’ documentation with the help
of tools e.g. D-Feet and qdbusviewer live, it will be an incredible help to use the utility
"dbusdoc.rexx" which introspects services and its interfaces using object path discov-
ery. The tool determines interface definitions and groups these objects path into al-
phabetical order which will be saved into a HTML file. In order to run the built-in tool
of the ooRexx D-Bus language binding the syntax is: dbusdoc.rex [session|system]

[services.bus.name]

If no arguments are given, the command line tool lists all available service names. Fig-
ure 2 displays the documentation for the service "org.freedesktop.Notifications".
Please be aware that the documentation may be different depending on the Linux dis-
tribution in use. [see Flat11, 21 f.]

4 EXPLORING D-BUS-SERVICES Page 15

Figure 2: On-the-Fly-Documentation "dbusdoc.rex"

4.2 D-Feet

The tool D-Feet provides a user interface and enables users to search for services and
drill down into interfaces’ definition. To use the tool basic know-how about object paths
is necessary in order to be able to consult the interfaces. It might be easy to use if
the user knows the service name to introspect as the tool provides a live introspection.
However, the tool does not represent a full documentation easy to read since it is a
viewer accessing the system in real-time.

In figure 3 on the left side of the panel, all discovered applications are listed divided
into system and session bus. Once an application is selected all declared paths and
interfaces are listed which can be drilled-down easily. [see Marg11, 13 f.]

In order to prove the system-wide existence of D-Bus services figure 3 shows the in-
trospection of Linux disk-management’s interface "org.freedesktop.UDisks2". There
are for instance the methods Mount and SetLabel available.

4 EXPLORING D-BUS-SERVICES Page 16

Figure 3: D-Feet on System Bus "org.freedesktop.UDisks2"

In D-feet it is also possible to execute methods supplied with its specified arguments.
Return values, if any, are shown.

4.3 qdbusviewer

Another helpful tool to visualise D-Bus services is qdbusviewer which is packaged with
the qt4-dev-tools. With qdbusviewer another feature is available: Connecting to sig-
nals. Once connected, for instance to signal ActiveChanged of interface
"org.freedesktop.ScreenSaver", the connection enables qdbusviewer to send its changed
signal which can be of interest to other applications. [see Marg11, 14 f.]

In figure 4 the application VLC becomes introspected on bus
"org.mpris.MediaPlayer2.Player". Available methods e.g. Next, Stop, Play and
properties e.g. PlaybackStatus, Shuffle, Position are displayed.

4 EXPLORING D-BUS-SERVICES Page 17

Figure 4: qdbusviewer on Session Bus "org.mpris.MediaPlayer2.Player"

5 NUTSHELL EXAMPLES Page 18

5 Nutshell Examples

In the implementation on nutshell examples the concepts of D-Bus scripted with ooRexx
shall be shown in six scripts controlling twelve applications. Every script will pursue a
different purpose including working with remote service objects, invoking simple meth-
ods, listening to applications and reacting on signals as well as an own client/server
concept communicating with each other. In figure 5 three different concepts are visu-
alised.

Figure 5: Concept of Nutshell Examples

• ooRexx Script Controls D-Bus
Listing 4 and 6 will use service objects to send messages.

• Listening to and Reacting on Signals
With the help of the listener examples 7, 8 and 9 the script will react on signals
and invoke further methods.

• Client-/Server Infrastructure
An own client/server infrastructure is set up with help of the method introspect

and remote service objects. The client can access all methods provided by the
server script.

5.1 A Powermode-Activity

In the example "Powermode-Activity" the script will change the KDE activity depending
on the machine’s power mode (battery in use).

5 NUTSHELL EXAMPLES Page 19

Figure 6: A Powermode-Activity

As introduced in chapter 3.1.4 two remote service objects are used, a system bus
object as well as a session bus object with paths as displayed in line 2 and 3 in list-
ing 3. The ooRexx script listing 4 will access the property onBattery in line 5 and 9
and change the KDE activity with the help of method SetCurrentActivity (with a string
containing an internal reference to the KDE activity). In the activity for battery mode
figure 6 is displayed as the desktop background to remember the user he or she runs
on battery. If the machine runs on power supply the script changes back to the normal
desktop activity.

1 #!/usr/bin/rexx

2 battery=.dbus~system~getObject("org.freedesktop.UPower","/org/freedesktop/UPower")

3 desktop=.dbus~session~getObject("org.kde.ActivityManager","/ActivityManager/Activities")

4
5 if battery~OnBattery then do

6 say "batterymode!"

7 desktop~SetCurrentActivity("c6c608eb-110c-4e87-80f6-89b48a66f75b")

8 end

9 else do

10 say "power plugged!"

11 desktop~SetCurrentActivity("d5394450-b9ed-4ebc-acec-d4c96668e24c")

12 end

13
14 .dbus~system~close -- close, thereby terminating message loop thread

15 .dbus~session~close

16 exit

17
18 ::requires "dbus.cls" -- get access to DBus

Listing 4: powermode.rex

5 NUTSHELL EXAMPLES Page 20

5.2 A Screenprotector

The "Screenprotector" will ask the user for a password to ensure he or she is granted
to work with the computer. If password input fails, the script will lock the computer and
show the screensaver.

Firstly, a short script in listing 5 will help to setup a password for the computer. In
line 6 the command gets routed to Linux bash to invoke "md5sum" and save the pass-
word hash to the file "password.txt". The md5sum is a hash function tool which gen-
erates a fingerprint of an application. Remember, md5sum is compromised in secu-
rity. However, for illustrating purposes the function works fine. For further information
please read documentation of md5sum by issuing the command man md5sum or see
http://wiki.ubuntuusers.de/md5sum.

1 #!/usr/bin/rexx

2
3 say "Please define a password to protect your computer:"

4 pull password

5
6 ADDRESS "bash" "echo -n "password" | md5sum > /home/richard/Dokumente/DBus/dbusoorexx/-

7 nutshells/screenprotector_encrypt/password.txt"

8
9 exit

10 ::requires "dbus.cls" -- get access to DBus

Listing 5: createpassword.rex

As introduced in chapter 3.1.4 a remote service session bus object is used, created in
listing 6, line 2. After invoking again md5sum to verify the pulled password the method
Lock can be invoked with no arguments. If the user typed the wrong password, the
computer becomes locked.

1 #!/usr/bin/rexx

2 o=.dbus~session~getObject("org.freedesktop.ScreenSaver","/org/freedesktop/ScreenSaver")

3
4 say "Please enter your password: "

5
6 pull pw

7 ADDRESS "bash" "echo -n "pw" | md5sum > /home/richard/Dokumente/DBus/dbusoorexx/-

8 nutshells/screenprotector_encrypt/inputpassword.txt"

9
10 userFile = .stream~new("password.txt")

11 userPassword = userFile~linein

12

5 NUTSHELL EXAMPLES Page 21

13 tempFile = .stream~new("inputpassword.txt")

14 tempPassword = tempFile~linein

15
16 if tempPassword = userPassword then say "Correct Password!"

17 else o~Lock()

18
19 ADDRESS "bash" "rm /home/richard/Dokumente/DBus/dbusoorexx/-

20 nutshells/screenprotector_encrypt/inputpassword.txt"

21
22 exit

23 ::requires "dbus.cls" -- get access to DBus

Listing 6: screenprotector.rex

5.3 A Klipper Listener

Figure 7: A Klipper Notification

"Klipper" is a clipboard manager for the KDE interface. The "Klipper Listener" will print
a notification (figure 7) once a text has been copied to Klipper. Klipper allows users of
Unix-like operating systems running the KDE desktop environment to access a history
of X Selections, any item of which can be reselected for pasting." [see Wiki14b] To
react on the Klipper signal, the listener introduced in chapter 3.1.5 is used.

The class "RexxSignalListener" dumps all signals it receives. Therefore method un-
known exists where all unknown messages become intercepted. The last argument is
"slotDir" which is extracted from "methArgs"; "slotDir" is the last argument of the signal
and contains e.g. the "messageTypeName", "interface" and "member" which is also
prompted to command line.

In listing 7 in line 8 the listener object becomes an instance and with the help of method
match (line 9) the script filters all messages with type=’signal’.
Method unknown, line 25, intercepts all unknown messages and loops through elements

5 NUTSHELL EXAMPLES Page 22

of the signals and outputs to command line as in figure 8. With the help of last argument
slotDir properties messageTypeName, interface, member are accessed and shown in
the terminal windows together with the number of supplied arguments (line 30). Once
the member = "NewToolTip" for interface = "org.kde.StatusNotifierItem" (line 32)
is found an additional prompt "Signal for Klipper found" is given (line 33) and the
clipboard content gets accessed with method getClipboardContents (line 34).

A typical notification as introduced in chapter 3.1.4 will be shown containing the content
of clipboard.

The routine pp will enclose the values with brackets [...] to be pretty readable on the
command line.

Figure 8: A Klipper Signal

1 #!/usr/bin/rexx

2 signal on halt /* intercept ctl-c (jump to label ’halt:’ below) */

3
4 conn=.dbus~session /* get the "session" connection */

5
6 conn~listener("add", .rexxSignalListener~new) /* add the Rexx listener object */

7 conn~match("add", "type=’signal’", .true) /* ask for any signal message */

8
9 say "Hit enter to stop listener..."

10
11 parse pull answer /* wait for pressing enter */

12 halt: /* a label for a halt condition (ctl-c) */

13
14 say "closing connection."

15
16 conn~close /* close connection, stops message loop */

17 .dbus~session~close

18
19 ::requires "dbus.cls" /* get dbus support for ooRexx */

20 ::requires "rgf_util2.rex" /* collection of ooRexx-utilities */

21
22 ::class RexxSignalListener /* just dump all signals/events we receive */

23 ::method unknown /* this method intercepts all unknown messages */

24 use arg methName, methArgs, kopete

5 NUTSHELL EXAMPLES Page 23

25 call dump2 methArgs, pp(methName)

26
27 slotDir=methArgs[methArgs~size] /* last argument is slotDir */

28 say "-->" pp(slotDir~messageTypeName) pp(slotDir~interface) -

29 pp(slotDir~member)", nrArgs="methArgs~items-1

30 if slotDir~interface = "org.kde.StatusNotifierItem" &-

31 slotDir~member = "NewToolTip" then do

32 say "Signal for Klipper found"

33 copy = .dbus~session~getObject("org.kde.klipper", "/klipper")~getClipboardContents

34
35 .dbus~session~getObject("org.freedesktop.Notifications",-

36 "/org/freedesktop/Notifications")~notify("ooRexx App", , "oorexx",-

37 "A Klipper notice", copy, , , -1)

38 end

39
40
41 do i=1 to methArgs~items

42 say " argument #" i":" pp(methArgs[i])

43 arg = methArgs[i]

44 end

45
46
47 say "-"~copies(79)

48
49 ::routine pp /* "pretty print": enclose string value with square brackets */

50 parse arg value

51 return "["value"]"

Listing 7: klipperListener.rex

5.4 A Bluetooth Listener

The "Bluetooth Listener" will display a notification (figure 9) once a bluetooth device
has been connected or removed.

In order to function properly a bluetooth driver and connection software have to be
installed. In many cases it may be delivered with the distribution’s standard software
kit. Please find kdebluetooth on https://extragear.kde.org/apps/kdebluetooth/.

5 NUTSHELL EXAMPLES Page 24

Figure 9: A Bluetooth Notification

Figure 10: A Bluetooth Signal

The class "RexxSignalListener" introduced in chapter 3.1.5 and used in nutshell exam-
ple 5.3 will be used to print bluetooth notifications as well. Again the element slotDir is
printed to the command line (line 28). Additionally, the bluetooth listener checks against
string ":sys:bluetooth-device-added" and ":sys:bluetooth-device-removed" in line
35 and 41 (figure 10) while looping through the arguments methArgs of the signal in line
31-46.

Once it matches, a notification figure 9 introduced in chapter 3.1.4 is displayed showing
a hard-coded text "A device has been connected" or "A device has been removed".

1 #!/usr/bin/rexx

2 signal on halt /* intercept ctl-c (jump to label ’halt:’ below) */

3
4 conn=.dbus~session /* get the "session" connection */

5
6 conn~listener("add", .rexxSignalListener~new) /* add the Rexx listener object */

7 conn~match("add", "type=’signal’", .true) /* ask for any signal message */

8
9 say "Hit enter to stop listener..."

10
11 parse pull answer /* wait for pressing enter */

12 halt: /* a label for a halt condition (ctl-c) */

13

5 NUTSHELL EXAMPLES Page 25

14 say "closing connection."

15
16 conn~close /* close connection, stops message loop */

17 .dbus~session~close

18
19 ::requires "dbus.cls" /* get dbus support for ooRexx */

20 ::requires "rgf_util2.rex" /* collection of ooRexx-utilities */

21
22 ::class RexxSignalListener /* just dump all signals/events we receive */

23 ::method unknown /* this method intercepts all unknown messages */

24 use arg methName, methArgs, kopete

25 call dump2 methArgs, pp(methName)

26
27 slotDir=methArgs[methArgs~size] /* last argument is slotDir */

28 say "-->" pp(slotDir~messageTypeName) pp(slotDir~interface) -

29 pp(slotDir~member)", nrArgs="methArgs~items-1

30
31 do i=1 to methArgs~items

32 say " argument #" i":" pp(methArgs[i])

33 arg = methArgs[i]

34 if arg = ":sys:bluetooth-device-added" then do

35 say "found BT-device"

36 .dbus~session~getObject("org.freedesktop.Notifications",-

37 "/org/freedesktop/Notifications")~notify("ooRexx App", , "oorexx",-

38 "Bluetooth Information", "A Device has been connected!", , , -1)

39 end

40 else if arg = ":sys:bluetooth-device-removed" then do

41 say "removed BT-device"

42 .dbus~session~getObject("org.freedesktop.Notifications",-

43 "/org/freedesktop/Notifications")~notify("ooRexx App", , "oorexx",-

44 "Bluetooth Information", "A Device has been removed!", , , -1)

45 end

46 end

47
48
49 say "-"~copies(79)

50
51 ::routine pp /* "pretty print": enclose string value with square brackets */

52 parse arg value

53 return "["value"]"

Listing 8: bluetoothListener.rex

5 NUTSHELL EXAMPLES Page 26

5.5 A Kopete Listener

"Kopete" is an instant messenger supporting numerous protocols (e.g. ICQ, Yahoo,
Windows Live Messenger and Skype). It is designed to be a flexible and extensible
multi-protocol system suitable for personal and enterprise use. Please see https://kopete.kde.org/
for further information and the download.

The second demonstrated application is the "VideoLAN Player", "VLC". VLC is a free
and open source cross-platform multimedia player and framework that plays most mul-
timedia files as well as DVDs, Audio CDs, VCDs, and various streaming protocols.

This nutshell reacts on the VLC’s playing-status in order to change the user’s instant
messenger status in Kopete. If he or she watches a film, Kopete will be set to offline
while the user is busy.

With the help of the "Kopete Listener" the user’s Kopete status will be set to offline
when he or she starts to play a file in VideoLAN Player immediately. If the status of the
VideoLAN Player changes back to "Stopped", the user’s Kopete status will be set back
to online. Kopete is an instant messenger supporting different protocols (e.g. ICQ,
Yahoo, Windows Live Messenger and Skype)

The script (listing 9) reacts on the signal PropertiesChanged when the status of the
VideoLAN Player changes to "Playing" or "Stopped". As the values are stored in a
dictionary, the listener introduced in chapter 3.1.5 works through the dict type and
checks against the status "Playing" or "Stopped". (Cf. chapter 2.3 which describes
types of D-Bus arguments.)

Once a status has changed to those predefined values, the Kopete methods suspend

or resume will be invoked. (Figure 11)

Figure 11: A Kopete Action on VLC Signal

5 NUTSHELL EXAMPLES Page 27

1 #!/usr/bin/rexx

2 signal on halt /* intercept ctl-c (jump to label ’halt:’ below) */

3
4 conn=.dbus~session /* get the "session" connection */

5
6 conn~listener("add", .rexxSignalListener~new) /* add the Rexx listener object */

7 conn~match("add", "type=’signal’", .true) /* ask for any signal message */

8
9 say "Hit enter to stop listener..."

10
11 parse pull answer /* wait for pressing enter */

12 halt: /* a label for a halt condition (ctl-c) */

13
14 say "closing connection."

15
16 conn~close /* close connection, stops message loop */

17 .dbus~session~close

18
19 ::requires "dbus.cls" /* get dbus support for ooRexx */

20 ::requires "rgf_util2.rex" /* collection of ooRexx-utilities */

21
22 ::class RexxSignalListener /* just dump all signals/events we receive */

23 ::method unknown /* this method intercepts all unknown messages */

24 use arg methName, methArgs, kopete

25 call dump2 methArgs, pp(methName)

26
27 slotDir=methArgs[methArgs~size] /* last argument is slotDir */

28 say "-->" pp(slotDir~messageTypeName) pp(slotDir~interface) -

29 pp(slotDir~member)", nrArgs="methArgs~items-1

30
31
32 do i=1 to methArgs~items

33 say " argument #" i":" pp(methArgs[i])

34 arg = methArgs[i]

35
36 if arg~isA(.collection) then

37 do j over arg

38 if arg~at(j) = "Playing" then do

39 say "found playing VLC"

40 .dbus~session~getObject("org.kde.kopete","/Kopete")~suspend

41 end

42 else if arg~at(j) = "Stopped" then do

43 say "found paused VLC"

44 .dbus~session~getObject("org.kde.kopete","/Kopete")~resume

45 end

46 end

47 end

5 NUTSHELL EXAMPLES Page 28

48
49
50 say "-"~copies(79)

51
52 ::routine pp /* "pretty print": enclose string value with square brackets */

53 parse arg value

54 return "["value"]"

Listing 9: kopeteListener.rex

5.6 Client-/Server-Communication

In the last nutshell example an own client/server infrastructure is set up to visualise
how to implement own services which can be discovered on D-Bus. The server the
own service on the session bus and the client uses provided methods.

To define an own service the application gets registered on the session bus. Object
path, bus name and interface can be chosen freely but can only be assigned to one
application at a time. Listing 10 is the server script and lines 5-7 set the paths. In line
15 a check whether the name is free is done and if not, the script will abort. This is
necessary as the service name must be unique!

In order to setup the server an instance of HelloRexxServer is created as a new
serviceObject (line 22). As class "HelloRexxServer" is not a subclass of the class
DBusService, the introspect path maker has to be explicity created and added as a
service object in line 25. With the help of the introspect path maker own interfaces can
be published.

Therefore with the method introspect all available interfaces of the service can be pub-
lished by providing a simple XML encoded string (line 37-58) as introduced in chapter
2.5.1.

Therefore all necessary input arguments (direction="in") and return values (direction="out")
have to be described for each interface. Those interfaces can be also discovered with
the help of D-Feet now!

The server script provides three different introspectable methods age, wlan and thanks.

• age

Method age will calculate the age of the user using a predefined string as an
argument.

• wlan

5 NUTSHELL EXAMPLES Page 29

Method wlan returns the status of the wireless-lan device in the computer (on/off).
Therefore the property WirelessEnabled of "org.freedesktop.NetworkManager"
is used.

• thanks

Method thanks returns a "thank-you" string concatenated with the current date
and time.

Once the server script has been started the service can be searched and used with
D-Feet or other tools introduced in chapter 4.

Figure 12 displays the server script waiting for connection.

Figure 12: A Server Listening

In the client script listing 11 it is possible to work with remote service objects as in-
troduced in chapter 3.1.4. The script invokes the three methods in line 16-22 and the
result after pulling the birthdate is displayed in figure 13.

This nutshell illustrates coverage of D-Bus services as applications can be used or
monitored platform-independent over a network with full applicability of D-Bus.

Figure 13: A Client Accessing

1
2 say "DBusVersion():" DBusVersion()

3 timeout=30 /* wait for 30 seconds (1 minute) for clients, then stop */

5 NUTSHELL EXAMPLES Page 30

4
5 objectPath ="/org/rexxla/oorexx/demo/AgeCalc"

6 busName ="org.rexxla.oorexx.demo.AgeCalc"

7 interface ="org.rexxla.oorexx.demo.AgeCalc"

8
9 conn=.dbus~session /* get the session bus */

10
11 signal on syntax name halt /* make sure message loop gets stopped */

12 signal on halt /* intercept ctl-c or closing terminal in which Rexx runs */

13
14 res=conn~busName("request", busName)

15 if res<>.dbus.dir~primaryOwner & res<>.dbus.dir~alreadyOwner then /* wait for clients*/

16 do

17 say "res="res "problem with requesting the bus name" busName", aborting ..."

18 exit -1

19 end

20
21 /* necessary for DBus debuggers else services are not visible */

22 conn~serviceObject("add", objectPath, .HelloRexxServer~new)

23 /* as class HelloRexxServer is not a subclass of the class DBusService,-

24 explicitly create and store the introspect path maker */

25 conn~serviceObject("Add", "default", .IDBusPathMaker~new(objectPath))

26
27 say "sleeping" timeout "secs ..."

28 call syssleep timeout

29
30 halt:

31 conn~close /* close, thereby terminating message loop thread */

32
33 ::requires "dbus.cls" /* get dbus support for ooRexx */

34
35 ::class HelloRexxServer

36
37 ::method Introspect /* return the introspection data for this service object */

38 return ’<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"’ -

39 ’"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd"> ’ -

40 ’<node> ’ -

41 ’ <interface name="org.freedesktop.DBus.Introspectable"> ’ -

42 ’ <method name="Introspect"> ’ -

43 ’ <arg name="data" direction="out" type="s"/> ’ -

44 ’ </method> ’ -

45 ’ </interface> ’ -

46 ’ <interface name="org.rexxla.oorexx.demo.AgeCalc"> ’ -

47 ’ <method name="age"> ’ -

48 ’ <arg name="time" direction="in" type="s"/> ’ -

49 ’ <arg name="result" direction="out" type="s"/> ’ -

50 ’ </method> ’ -

51 ’ <method name="wlan"> ’ -

5 NUTSHELL EXAMPLES Page 31

52 ’ <arg name="wlan" direction="out" type="s"/> ’ -

53 ’ </method> ’ -

54 ’ <method name="thanks"> ’ -

55 ’ <arg name="thanks" direction="out" type="s"/> ’ -

56 ’ </method> ’ -

57 ’ <property name="ServiceName" access="read" type="s"/> ’ -

58 ’ </interface> ’ -

59 ’</node> ’

60
61 ::method serviceName /* the name of this service object */

62 return "AgeCalcService"

63
64 ::method age /* the service method ’age’ returns the age */

65 use arg date

66
67 today = .DateTime~new

68 birthDate = .DateTime~new(date(’F’, date, "S"))

69
70 result = today - birthDate

71 years = result~days()/365

72 return years~round() "years"

73
74 ::method wlan

75
76 wlanStatus = .dbus~system~getObject("org.freedesktop.NetworkManager",-

77 "/org/freedesktop/NetworkManager")~WirelessEnabled

78 return wlanStatus

79
80 ::method thanks /* the service method ’thanks’ returns a string

81 to be marshalled as ’ay’ (an array of bytes) */

82 return "This is a thank you to D-Bus with ooRexx at" .dateTime~new"."

83
84 ::method Get /* access to our only property requested, return it */

85 return self~serviceName

Listing 10: rexxServer.rex

1 #!/usr/bin/rexx

2
3 conn=.dbus~connect("session") /* connect to the "session" bus */

4
5 objectPath ="/org/rexxla/oorexx/demo/AgeCalc"

6 busName ="org.rexxla.oorexx.demo.AgeCalc"

7 interface ="org.rexxla.oorexx.demo.AgeCalc"

8
9 o=conn~getObject(busName, objectPath) /* get the DBus object */

10
11 say "Talking to the service" pp2(o~ServiceName)

12

5 NUTSHELL EXAMPLES Page 32

13 say "Please enter your birthday in yyyymmdd:"

14 pull date

15
16 say pp(o~age(date))

17 say "---"

18 if o~wlan() then say "Wireless-Lan is on!"

19 else "Wireless-Lan is off!"

20 say "---"

21 say o~thanks

22 say "---"

23
24 conn~close /* close, thereby terminating message loop thread */

25
26 ::requires "dbus.cls" /* get dbus support for ooRexx */

27 ::requires "rgf_util2.rex" /* installed with the BSF4ooRexx package */

Listing 11: rexxClient.rex

6 ROUNDUP AND OUTLOOK Page 33

6 Roundup and Outlook

This article introduced the ooRexx language binding for D-Bus, DBus4ooRexx, which
allows to take advantage of the D-Bus messaging system for ooRexx programmers.
The concepts and characteristics of D-Bus got described in order to understand the
provided nutshell examples and to enable readers to try out nutshells and own ideas.

All nutshell examples got briefly introduced on its illustration idea and relevant lines of
code. With the help of figures the outcome has been documented. The examples were
sorted after its complexity aiming different intentions. All examples are prototypes and
have only been tested in the author’s specific environment.

A full comparison (e.g. with focus on performance issues) to other scripting language
bindings should be conducted in order improve the ooRexx language binding in perfor-
mance, if any issues exist. Additionally, new useful connections between Linux D-Bus
services should be proved to show the D-Bus’ potentialities.

REFERENCES Page 34

References

[DbusJava14] D-Bus Java Download: Index of dbus-java
http://dbus.freedesktop.org/releases/dbus-java/, accessed on 2014-12-22.

[DbusJavaDoc14] D-Bus Java Documentation: D-Bus programming in Java 1.5
http://dbus.freedesktop.org/doc/dbus-java/dbus-java/, accessed on 2014-12-22.

[DbusPython14] D-Bus-Python: Index of dbus-python
http://dbus.freedesktop.org/releases/dbus-python/, accessed on 2014-12-22.

[Dis14] Distrowatch: Distrowatch.com
http://distrowatch.com/, accessed on 2014-12-22.

[Flat11] Flatscher, Rony G.: An Introduction to the D-Bus Language Binding for
ooRexx. The 2011 International Rexx Symposium, Oranjestad, Aruba, Dutch West-
Indies, 2011

[FreeD14a] The Freedesktop Project: What is D-Bus?
http://www.freedesktop.org/wiki/Software/dbus/#index4h1, accessed on 2014-12-
22.

[FreeD14b] The Freedesktop Project: D-Bus Overview.
https://pythonhosted.org/txdbus/dbus_overview.html, accessed on 2014-12-22.

[KdeBlue14] The KDE Extragear: kdebluetooth
https://extragear.kde.org/apps/kdebluetooth/, accessed on 2014-12-22.

[Kop14] Kopete Instant Messenger: Kopete, The KDE Instant Messenger
https://kopete.kde.org/, accessed on 2014-12-22.

[Md5sum14] Md5sum: Wiki of md5sum
http://wiki.ubuntuusers.de/md5sum, accessed on 2014-12-22.

[Marg11] Margiol, Sebastian: Scripting the Linux D-Bus with ooRexx. Seminar Paper,
Institute for Management Information Systems, Vienna University of Economics and
Business Administration, 2011

[SoFo14a] Sourceforge: Open Object Rexx Download.
http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/, accessed on 2014-12-22.

[SoFo14b] Sourceforge: BSF4ooRexx Download.
http://sourceforge.net/projects/bsf4oorexx/files/GA/sandbox/dbusoorexx/, accessed
on 2014-12-22.

REFERENCES Page 35

[SoFo14c] Sourceforge: BSF4ooRexx Source Code.
http://sourceforge.net/p/bsf4oorexx/code/HEAD/tree/sandbox/rgf/misc/dbusoorexx/,
accessed on 2014-12-22.

[Vlc14] VLC Player: VLC Player auf VLC.de
http://www.vlc.de/, accessed on 2014-12-22.

[Wiki14] Wikipedia: Language binding.
http://en.wikipedia.org/wiki/Language_binding, accessed on 2014-12-22.

[Wiki14b] Wikipedia: Klipper.
http://en.wikipedia.org/wiki/Klipper, accessed on 2014-12-22.

[Wu14] WU Wien: Directory listing of D-Bus Windows.
http://wi.wu.ac.at/rgf/rexx/orx22/work/, accessed on 2014-12-22.

[WuRgf14] Rgf util2: Directory listing of orx20.
http://wi.wu.ac.at:8002/rgf/rexx/orx20/, accessed on 2014-12-22.

