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● New Features in ooRexx 5

● Roundup
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Brief History, ooRexx, 1

● 1979 – Birthday of REXX
— Developed at Hursley by Mike F. Cowlishaw

● Became of strategic importance to IBM
— SAA REXX for all IBM operating system platforms

● 1996 – ANSI (INCITS 274-1996) REXX standard!

● Development of Object REXX
— Original lead: Simon Nash at IBM Hursley

— Development turned to the US, lead: Rick McGuire

— 1996 released with OS/2 Warp, versions for Windows, AIX,
Linux followed
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Brief History, ooRexx, 2

● Fall 2004 

— RexxLA and IBM announce transfer of Object REXX
source code to RexxLA
● Rick McGuire remained active in the opensource

project and has been instrumental for the evolution
of the programming language 

● March 2005 

— "ooRexx 3.0" source and binaries released by RexxLA

— "ooRexx", acronym for "open object Rexx"
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Brief History, ooRexx, 3

● Fall 2009 

— ooRexx 4.0 released
● New, rewritten kernel
● New native API comparable in features and power

to Java's native interface APIs ("JNI")
— Fully exploited by the ooRexx function package

"BSF4ooRexx" which bridges ooRexx and Java
● For the first time possible to create 32- and 64-bit

binaries from the same source
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Brief History, ooRexx, 4

● February 2014
— ooRexx 4.2 released

● Ever since then work on ooRexx 5.0 has been carried out

● As of the Hursley symposium in 2019, ooRexx 5 is
— Stabler than 4.2

— Faster than 4.2 (20% to 2000%)

— Multithreading support improved considerably

— Many useful new features over 4.2 making it altogether a "swiss
army knife (SAK)" of programming!
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Bird-Eyes View of ooRexx, 1

● Compatible to REXX
— Mandated by IBM customers who did not want to have

to rewrite existing REXX code for Object REXX

● Added object-oriented features like
— Ability to define classes with methods and attributes

— Multithreaded execution of Object REXX programs

— Interfacing with other object-oriented technologies in
the industry, especially from IBM, e.g.
● SOM: system object model
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Bird-Eyes View of ooRexx, 2

● Still "human-oriented" design like REXX
— Easy syntax, easy to learn

● Using the message metaphor (cf. Smalltalk)
— Everything is an object

— An object is like a living thing 

— One interacts with an object by sending it messages

— The object will look for a method by the name of the
received message and invokes it

— Any return value will be returned by the object
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Bird-Eyes View of ooRexx, 3

● An example 
test="12345"        /* a string */
say "REXX-style (function invocation): say reverse(test)"
say reverse(test)   /* invoking the built-in string function "reverse" */
say

say "ooRexx-style (sending a message): say test~reverse"

say test~reverse    /* invoking the string method "reverse"            */

● Output
REXX-style (function invocation): say reverse(test)
54321

ooRexx-style (sending a message): say test~reverse
54321



 10

Bird-Eyes View of ooRexx, 4

● At the same time both coding styles possible

● Message paradigm 
— Quite easy to understand (very easy for beginners)

— Decoupling the method invocation 
● Very dynamic solutions at runtime possible

— E.g. rerouting of messages at runtime

— Easy to understand inheritance as conceptually
● The receiving object will look for a method by the same name

as the received message by walking up the inheritance tree
until it finds one and executes it, otherwise the object raises an
error condition
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New Features in ooRexx 5, 1
General
● Build-system changed from autotools to CMake

● Interpreter can be used without administrative rights
— USB stick solutions become possible

● Significant performance gains (from 20% up to 2000%)

● New package confined local environment

● New package scope for methods

● New isNil method for root class Object

● Namespaces introduced (prefix rexx: for ooRexx)
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New Features in ooRexx 5, 2
New Array Notation, 1
● An array gets created 

— Explicitly as an instance of the Array class, e.g.
arr=.array~new

— Implicitly with the new array notation
● A comma separated list of values in parentheses
● Parentheses can be omitted if the context expects a

single collection object
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New Features in ooRexx 5, 3
New Array Notation, 2
● Example

arr="one", "two", "three"  -- define an array
do item over arr  -- iterate over items
   say item       -- display item
end

● Output
one
two
three
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New Features in ooRexx 5, 4
New Variable Reference Notation, 1
● Variable Reference

— Can be created with either the new < or the > prefix

— Yields an instance of type VariableReference
● Name and value of the variable can be fetched
● Value of the variable can be set

● Fetching arguments as variable reference

— USE ARG variables prefixed with either < or the > 

— Local variables actually refer to the caller's variable
reference
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New Features in ooRexx 5, 5
New Variable Reference Notation, 2
● Example

a="hello!"     -- hello!"
call work >a   -- create and supply a variable reference
say a          -- refers to string "from the work routine"

::routine work
  use arg >tmp -- "tmp" now represents the variable "a"
  tmp="from the work routine"

● Output
from the work routine
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New Features in ooRexx 5, 6
New Directives, 1
● ooRexx directives

— At the end of a program ("package")

— Led in with two colons "::"

— Contract with the interpreter
● Interpreter carries out all directives before starting the

program with executing the statement starting with line one
● ::attribute, ::class, ::constant, ::method, ::options, ::requires, ::routine

● New "::ANNOTATE" directive
— Allows to annotate a package (program), routines, classes,

attributes, methods and constants
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New Features in ooRexx 5, 7
New Directives, 2
● New "::RESOURCE" directive

— Allows to store any (even multiline) text
● Binary data could be stored in base64 encoded form

— Use the String method encodeBase64 for encoding
— Use the String method decodeBase64 for decoding

— "::END" directive serves as the delimiter

— All resources will be stored in a StringTable 
● Environment symbol .resources returns it 
● Text of each resource will be stored in an array 
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New Features in ooRexx 5, 8
New Directives, 3
● Example

say "greetings:"
say .resources~greetings
-- fetch the string array turn it to a plain string, decode
say .resources~secret~makeString~decodeBase64

::resource greetings -- note the empty lines

  Hello,
  REXX 2019!

::END

::resource secret    -- base64 encoded
b29SZXh4IGlzIGNvb2whIDop
::END

● Output
greetings:

  Hello,
  REXX 2019!

ooRexx is cool! :)
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New Features in ooRexx 5, 8
"ADDRESS … WITH", 1
● ANSI REXX defines the optional WITH subkeyword

for the ADDRESS keyword instruction
— Allows to redirect stdin ("input"), stdout ("output") and

stderr ("error") from/to stems

— ooRexx in addition allows redirections from/to streams
and collections

— On output one can replace or append the data
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New Features in ooRexx 5, 9
"ADDRESS … WITH", 2
● Example (list environment variables in sorted order)

"set | sort"   -- command to environment
say "RC="rc    -- display return code

● Output (on Windows, maybe)
ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Administrator\AppData\Roaming
… cut … 
RC=0



 21

New Features in ooRexx 5, 10
"ADDRESS … WITH", 3
● Example (list environment variables in sorted order)

out=.array~new -- create array to retrieve data
   -- command to environment
address system "set | sort" with output using (out)
do i=1 to 3
   say "out["i"]="out[i]
end
say "RC="rc    -- display return code

● Output (on Windows, maybe)
out[1]=ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
out[2]=ALLUSERSPROFILE=C:\ProgramData
out[3]=APPDATA=C:\Users\Administrator\AppData\Roaming
RC=0 
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New Features in ooRexx 5, 11
"ADDRESS … WITH", 4
● Example (use operating system sort command)

in ="Tracy","Angie","Berta"            -- input data
out=.array~new                         -- output data
   -- command to environment use ooRexx arrays as stdin and stdout
address system "sort" with input using (in) output using (out)
say "RC="rc       -- display return code
do item over out  -- iterate over all items of array
   say item       -- display items
end

● Output 
RC=0
Angie
Berta
Tracy
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New Features in ooRexx 5, 12
"DO" and "LOOP", 1
● New subkeywords "WITH [INDEX idx] [ITEM val]" 

— Allows to iterate over collections and optionally assign
multiple loop variables
● The index value of the collection to a loop variable and
● The item value of the collection to another loop variable
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New Features in ooRexx 5, 13
"DO" and "LOOP", 2
● Example

ibmers=.stringTable~new     -- faster "Directory" collection class
ibmers["Les"]="Koehler (RIP)"
ibmers["Mike"]="Cowlishaw"
ibmers["Rick"]="McGuire"
ibmers["Simon"]="Nash"
ibmers["Walter"]="Pachl"

say "IBMers who have been closely ;) related to REXX:"
    -- iterate over (unordered) collection, use two loop variables
do with index firstName item lastName over ibmers
   say firstName"," lastName           -- show index and item values
end

● Output (random order)
IBMers who have been closely ;) related to REXX:
Les, Koehler (RIP)
Rick, McGuire
Simon, Nash
Mike, Cowlishaw
Walter, Pachl
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New Features in ooRexx 5, 14
"DO" and "LOOP", 3
● New subkeyword "COUNTER c"

— Allows to supply a counter that starts with "1" and gets
increased by 1 at the end of each loop

— Enables counting in contexts where a numerical loop
variable cannot be defined like in "DO … OVER ..."
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New Features in ooRexx 5, 15
"DO" and "LOOP", 4
● Example

   -- new: "of" class method for all kind of collections!
board=.Directory~of(("Chip","Davis"),("Gil","Barmwater"),("Jon","Wolfers"),-
        ("Les","Koehler (RIP)"), ("Mark","Hessling"), ("Mike","Cowlishaw"),-
        ("Pam","Taylor"),("Rene","Jansen"), ("Walter","Pachl"))

say "RexxLA board members:"
   -- also show iteration count while looping over the (unordered) collection
loop counter i with index firstName item lastName over board
   say "#" i":" lastName"," firstName
end

● Output (random order)
RexxLA board members:
# 1: Wolfers, Jon
# 2: Koehler (RIP), Les
# 3: Hessling, Mark
# 4: Cowlishaw, Mike
# 5: Pachl, Walter
# 6: Barmwater, Gil
# 7: Taylor, Pam
# 8: Davis, Chip
# 9: Jansen, Rene
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New Features in ooRexx 5, 16
Further Improvements
● SELECT keyword instruction

— New: accepts an expression

— WHEN instructions only list the resulting expression
values they are intended for

— Comparable to NetRexx

● USE keyword instruction
— New subkeyword LOCAL followed by a list of local

variables in method routines 
● All other variables in the method routine are defined to

be attributes of the class
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New Features in ooRexx 5, 17
New Classes, 1
● AlarmNotification (multithreading related)

— Allows notification when an alarm gets triggered

— Abstract method triggered must be implemented

● MessageNotification (multithreading related)
— Allows notification when an asynchroneous message's method

completed execution

— Abstract method messageCompleted must be implemented

● Ticker (multithreading related)
— Allows notifications to be constantly sent at a given interval 
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New Features in ooRexx 5, 18
New Classes, 2
● EventSemaphore (multithreading related)

— Allows to synchronize Rexx threads

— Once posted all blocked threads resume execution

● MutexSemaphore (multithreading related)
— Allows to synchronize Rexx threads

— When a thread completes, one of the blocked threads
resumes execution
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New Features in ooRexx 5, 19
New Classes, 3
● RexxInfo 

— Its methods return the current settings of ooRexx, e.g
● date, maxPathLength, platform, revision, version, … 

● Validate 
— Eases validating arguments considerably

● Of a certain class, a certain type (e.g., whole number,
logical value), ...

● VariableReference 
— Represents a variable reference (result of applying the

new ">", "<" operators to a variable) 
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New Features in ooRexx 5, 20

● rexxc[.exe]

— Compiles Rexx source code to binary representation

— Speeds up loading of Rexx programs, hides source code

— New undocumented trailing switch "/E"

● Encode binary representation as base64

● Allows loading and running compiled Rexx programs via
scripting frameworks, e.g.,
— Java scripting framework expects text-only programs
— Binary data would cause character set translations 

● Would inadvertently destroy the program!
— base64 encoded binary data would remain intact
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Roundup

● ooRexx 5
— Since 2014 in the works

● Great speed improvements

● Great new functionalities in different areas of the language

● Still easy to learn and to use

● Windows, Linux, MacOS
● USB-stick versions possible, finally!

— Allows creation of SAK-ooRexx-USB-sticks!

— Can be compiled for IBM mainframes !

● Use mainframe ooRexx with BSF4ooRexx on "Linux on Z"!
— E.g. write ooRexx code to interact directly with DB2 !
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URLs

● RexxLA-Homepage (non-profit SIG, owner of ooRexx, BSF4ooRexx)

<http://www.rexxla.org/>

● ooRexx 5.0 beta on Sourceforge 

<https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/>

● BSF4ooRexx on Sourceforge (ooRexx-Java bridge)

<https://sourceforge.net/projects/bsf4oorexx/>

● Introduction to ooRexx (254 pages)

 <https://www.facultas.at/Flatscher> 

● JetBrains "IntelliJ IDEA", powerful IDE for all operating systems

— <https://www.jetbrains.com/idea/download>, free "Community-Edition"

— Alexander Seik's ooRexx-Plugin with readme (as of: 2019-08-27)

● <https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/beta/1.0.5/> 
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