
ooRexx 5 Yielding Swiss Army Knife Usability

2019 – International Rexx Symposium

Hursley, September 2019

Rony G. Flatscher (Rony.Flatscher@wu.ac.at, http://www.ronyRexx.net)

Günter Müller (mueller@iig.uni-freiburg.de)
Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Overview

● Brief history

● Bird-eyes view of ooRexx

● New Features in ooRexx 5

● Roundup

 3

Brief History, ooRexx, 1

● 1979 – Birthday of REXX
— Developed at Hursley by Mike F. Cowlishaw

● Became of strategic importance to IBM
— SAA REXX for all IBM operating system platforms

● 1996 – ANSI (INCITS 274-1996) REXX standard!

● Development of Object REXX
— Original lead: Simon Nash at IBM Hursley

— Development turned to the US, lead: Rick McGuire

— 1996 released with OS/2 Warp, versions for Windows, AIX,
Linux followed

 4

Brief History, ooRexx, 2

● Fall 2004

— RexxLA and IBM announce transfer of Object REXX
source code to RexxLA
● Rick McGuire remained active in the opensource

project and has been instrumental for the evolution
of the programming language

● March 2005

— "ooRexx 3.0" source and binaries released by RexxLA

— "ooRexx", acronym for "open object Rexx"

 5

Brief History, ooRexx, 3

● Fall 2009

— ooRexx 4.0 released
● New, rewritten kernel
● New native API comparable in features and power

to Java's native interface APIs ("JNI")
— Fully exploited by the ooRexx function package

"BSF4ooRexx" which bridges ooRexx and Java
● For the first time possible to create 32- and 64-bit

binaries from the same source

 6

Brief History, ooRexx, 4

● February 2014
— ooRexx 4.2 released

● Ever since then work on ooRexx 5.0 has been carried out

● As of the Hursley symposium in 2019, ooRexx 5 is
— Stabler than 4.2

— Faster than 4.2 (20% to 2000%)

— Multithreading support improved considerably

— Many useful new features over 4.2 making it altogether a "swiss
army knife (SAK)" of programming!

 7

Bird-Eyes View of ooRexx, 1

● Compatible to REXX
— Mandated by IBM customers who did not want to have

to rewrite existing REXX code for Object REXX

● Added object-oriented features like
— Ability to define classes with methods and attributes

— Multithreaded execution of Object REXX programs

— Interfacing with other object-oriented technologies in
the industry, especially from IBM, e.g.
● SOM: system object model

 8

Bird-Eyes View of ooRexx, 2

● Still "human-oriented" design like REXX
— Easy syntax, easy to learn

● Using the message metaphor (cf. Smalltalk)
— Everything is an object

— An object is like a living thing

— One interacts with an object by sending it messages

— The object will look for a method by the name of the
received message and invokes it

— Any return value will be returned by the object

 9

Bird-Eyes View of ooRexx, 3

● An example
test="12345" /* a string */
say "REXX-style (function invocation): say reverse(test)"
say reverse(test) /* invoking the built-in string function "reverse" */
say

say "ooRexx-style (sending a message): say test~reverse"

say test~reverse /* invoking the string method "reverse" */

● Output
REXX-style (function invocation): say reverse(test)
54321

ooRexx-style (sending a message): say test~reverse
54321

 10

Bird-Eyes View of ooRexx, 4

● At the same time both coding styles possible

● Message paradigm
— Quite easy to understand (very easy for beginners)

— Decoupling the method invocation
● Very dynamic solutions at runtime possible

— E.g. rerouting of messages at runtime

— Easy to understand inheritance as conceptually
● The receiving object will look for a method by the same name

as the received message by walking up the inheritance tree
until it finds one and executes it, otherwise the object raises an
error condition

 11

New Features in ooRexx 5, 1
General
● Build-system changed from autotools to CMake

● Interpreter can be used without administrative rights
— USB stick solutions become possible

● Significant performance gains (from 20% up to 2000%)

● New package confined local environment

● New package scope for methods

● New isNil method for root class Object

● Namespaces introduced (prefix rexx: for ooRexx)

 12

New Features in ooRexx 5, 2
New Array Notation, 1
● An array gets created

— Explicitly as an instance of the Array class, e.g.
arr=.array~new

— Implicitly with the new array notation
● A comma separated list of values in parentheses
● Parentheses can be omitted if the context expects a

single collection object

 13

New Features in ooRexx 5, 3
New Array Notation, 2
● Example

arr="one", "two", "three" -- define an array
do item over arr -- iterate over items
 say item -- display item
end

● Output
one
two
three

 14

New Features in ooRexx 5, 4
New Variable Reference Notation, 1
● Variable Reference

— Can be created with either the new < or the > prefix

— Yields an instance of type VariableReference
● Name and value of the variable can be fetched
● Value of the variable can be set

● Fetching arguments as variable reference

— USE ARG variables prefixed with either < or the >

— Local variables actually refer to the caller's variable
reference

 15

New Features in ooRexx 5, 5
New Variable Reference Notation, 2
● Example

a="hello!" -- hello!"
call work >a -- create and supply a variable reference
say a -- refers to string "from the work routine"

::routine work
 use arg >tmp -- "tmp" now represents the variable "a"
 tmp="from the work routine"

● Output
from the work routine

 16

New Features in ooRexx 5, 6
New Directives, 1
● ooRexx directives

— At the end of a program ("package")

— Led in with two colons "::"

— Contract with the interpreter
● Interpreter carries out all directives before starting the

program with executing the statement starting with line one
● ::attribute, ::class, ::constant, ::method, ::options, ::requires, ::routine

● New "::ANNOTATE" directive
— Allows to annotate a package (program), routines, classes,

attributes, methods and constants

 17

New Features in ooRexx 5, 7
New Directives, 2
● New "::RESOURCE" directive

— Allows to store any (even multiline) text
● Binary data could be stored in base64 encoded form

— Use the String method encodeBase64 for encoding
— Use the String method decodeBase64 for decoding

— "::END" directive serves as the delimiter

— All resources will be stored in a StringTable
● Environment symbol .resources returns it
● Text of each resource will be stored in an array

 18

New Features in ooRexx 5, 8
New Directives, 3
● Example

say "greetings:"
say .resources~greetings
-- fetch the string array turn it to a plain string, decode
say .resources~secret~makeString~decodeBase64

::resource greetings -- note the empty lines

 Hello,
 REXX 2019!

::END

::resource secret -- base64 encoded
b29SZXh4IGlzIGNvb2whIDop
::END

● Output
greetings:

 Hello,
 REXX 2019!

ooRexx is cool! :)

 19

New Features in ooRexx 5, 8
"ADDRESS … WITH", 1
● ANSI REXX defines the optional WITH subkeyword

for the ADDRESS keyword instruction
— Allows to redirect stdin ("input"), stdout ("output") and

stderr ("error") from/to stems

— ooRexx in addition allows redirections from/to streams
and collections

— On output one can replace or append the data

 20

New Features in ooRexx 5, 9
"ADDRESS … WITH", 2
● Example (list environment variables in sorted order)

"set | sort" -- command to environment
say "RC="rc -- display return code

● Output (on Windows, maybe)
ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Administrator\AppData\Roaming
… cut …
RC=0

 21

New Features in ooRexx 5, 10
"ADDRESS … WITH", 3
● Example (list environment variables in sorted order)

out=.array~new -- create array to retrieve data
 -- command to environment
address system "set | sort" with output using (out)
do i=1 to 3
 say "out["i"]="out[i]
end
say "RC="rc -- display return code

● Output (on Windows, maybe)
out[1]=ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
out[2]=ALLUSERSPROFILE=C:\ProgramData
out[3]=APPDATA=C:\Users\Administrator\AppData\Roaming
RC=0

 22

New Features in ooRexx 5, 11
"ADDRESS … WITH", 4
● Example (use operating system sort command)

in ="Tracy","Angie","Berta" -- input data
out=.array~new -- output data
 -- command to environment use ooRexx arrays as stdin and stdout
address system "sort" with input using (in) output using (out)
say "RC="rc -- display return code
do item over out -- iterate over all items of array
 say item -- display items
end

● Output
RC=0
Angie
Berta
Tracy

 23

New Features in ooRexx 5, 12
"DO" and "LOOP", 1
● New subkeywords "WITH [INDEX idx] [ITEM val]"

— Allows to iterate over collections and optionally assign
multiple loop variables
● The index value of the collection to a loop variable and
● The item value of the collection to another loop variable

 24

New Features in ooRexx 5, 13
"DO" and "LOOP", 2
● Example

ibmers=.stringTable~new -- faster "Directory" collection class
ibmers["Les"]="Koehler (RIP)"
ibmers["Mike"]="Cowlishaw"
ibmers["Rick"]="McGuire"
ibmers["Simon"]="Nash"
ibmers["Walter"]="Pachl"

say "IBMers who have been closely ;) related to REXX:"
 -- iterate over (unordered) collection, use two loop variables
do with index firstName item lastName over ibmers
 say firstName"," lastName -- show index and item values
end

● Output (random order)
IBMers who have been closely ;) related to REXX:
Les, Koehler (RIP)
Rick, McGuire
Simon, Nash
Mike, Cowlishaw
Walter, Pachl

 25

New Features in ooRexx 5, 14
"DO" and "LOOP", 3
● New subkeyword "COUNTER c"

— Allows to supply a counter that starts with "1" and gets
increased by 1 at the end of each loop

— Enables counting in contexts where a numerical loop
variable cannot be defined like in "DO … OVER ..."

 26

New Features in ooRexx 5, 15
"DO" and "LOOP", 4
● Example

 -- new: "of" class method for all kind of collections!
board=.Directory~of(("Chip","Davis"),("Gil","Barmwater"),("Jon","Wolfers"),-
 ("Les","Koehler (RIP)"), ("Mark","Hessling"), ("Mike","Cowlishaw"),-
 ("Pam","Taylor"),("Rene","Jansen"), ("Walter","Pachl"))

say "RexxLA board members:"
 -- also show iteration count while looping over the (unordered) collection
loop counter i with index firstName item lastName over board
 say "#" i":" lastName"," firstName
end

● Output (random order)
RexxLA board members:
1: Wolfers, Jon
2: Koehler (RIP), Les
3: Hessling, Mark
4: Cowlishaw, Mike
5: Pachl, Walter
6: Barmwater, Gil
7: Taylor, Pam
8: Davis, Chip
9: Jansen, Rene

 27

New Features in ooRexx 5, 16
Further Improvements
● SELECT keyword instruction

— New: accepts an expression

— WHEN instructions only list the resulting expression
values they are intended for

— Comparable to NetRexx

● USE keyword instruction
— New subkeyword LOCAL followed by a list of local

variables in method routines
● All other variables in the method routine are defined to

be attributes of the class

 28

New Features in ooRexx 5, 17
New Classes, 1
● AlarmNotification (multithreading related)

— Allows notification when an alarm gets triggered

— Abstract method triggered must be implemented

● MessageNotification (multithreading related)
— Allows notification when an asynchroneous message's method

completed execution

— Abstract method messageCompleted must be implemented

● Ticker (multithreading related)
— Allows notifications to be constantly sent at a given interval

 29

New Features in ooRexx 5, 18
New Classes, 2
● EventSemaphore (multithreading related)

— Allows to synchronize Rexx threads

— Once posted all blocked threads resume execution

● MutexSemaphore (multithreading related)
— Allows to synchronize Rexx threads

— When a thread completes, one of the blocked threads
resumes execution

 30

New Features in ooRexx 5, 19
New Classes, 3
● RexxInfo

— Its methods return the current settings of ooRexx, e.g
● date, maxPathLength, platform, revision, version, …

● Validate
— Eases validating arguments considerably

● Of a certain class, a certain type (e.g., whole number,
logical value), ...

● VariableReference
— Represents a variable reference (result of applying the

new ">", "<" operators to a variable)

 31

New Features in ooRexx 5, 20

● rexxc[.exe]

— Compiles Rexx source code to binary representation

— Speeds up loading of Rexx programs, hides source code

— New undocumented trailing switch "/E"

● Encode binary representation as base64

● Allows loading and running compiled Rexx programs via
scripting frameworks, e.g.,
— Java scripting framework expects text-only programs
— Binary data would cause character set translations

● Would inadvertently destroy the program!
— base64 encoded binary data would remain intact

 32

Roundup

● ooRexx 5
— Since 2014 in the works

● Great speed improvements

● Great new functionalities in different areas of the language

● Still easy to learn and to use

● Windows, Linux, MacOS
● USB-stick versions possible, finally!

— Allows creation of SAK-ooRexx-USB-sticks!

— Can be compiled for IBM mainframes !

● Use mainframe ooRexx with BSF4ooRexx on "Linux on Z"!
— E.g. write ooRexx code to interact directly with DB2 !

 33

URLs

● RexxLA-Homepage (non-profit SIG, owner of ooRexx, BSF4ooRexx)

<http://www.rexxla.org/>

● ooRexx 5.0 beta on Sourceforge

<https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/>

● BSF4ooRexx on Sourceforge (ooRexx-Java bridge)

<https://sourceforge.net/projects/bsf4oorexx/>

● Introduction to ooRexx (254 pages)

 <https://www.facultas.at/Flatscher>

● JetBrains "IntelliJ IDEA", powerful IDE for all operating systems

— <https://www.jetbrains.com/idea/download>, free "Community-Edition"

— Alexander Seik's ooRexx-Plugin with readme (as of: 2019-08-27)

● <https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/beta/1.0.5/>

	"Leaping from Classic to Object"
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

