
Open Object Rexx 5.1
Classic Short Reference

Jochem Peelen

14 Apr 2025

The popular IBM REXX Reference Cards always were a bit too brief for me. So I wrote a Short Reference
for myself. Over time, this eventually developed into the current document. It provides 99 % of the
information I need to look up when working with ooRexx. I hope it is useful for others, particularly
those who also code classic style.

Purpose

• The document applies to Windows 7 (or later) with ooRexx 5.1 installed.
• Its first part is a compact syntax presentation of what I see as frequently used language elements,

grouped by type:

– character strings,
– strings of words,
– program loops,
– arithmetic (including Rosettacode library RXM),
– time and date,
– managing files and directories,
– reading and writing of files (the „new“ and the „conventional“ way),
– bits and bytes (hexadecimal, decimal, binary presentation).

• The second part, starting on page 35, is an introduction for newcomers how to use the following
„multitools“ ooRexx provides:

– stem variables,
– arrays –plus capabilities of method SORT2– (mostly written with migration from stems to

arrays in mind),
– USE ARG –including ::ROUTINE– for subroutines and function libraries.

• The third part, starting on page 51, shows less frequently referenced but important matters:

– „Classic“ versus „object oriented“ way to use ~sortwith for solving a simple sort problem,
– some ooRexx fundamentals,
– how to read the syntax diagrams of this document,
– alphabetical index,
– table of contents (immediately accessible on the back page).

• Potential ooRexx users could use this document to get a feeling of the language. I particularly
recommend the chapters on fundamentals (page 55) and how numbers are processed (page 16)
for this.

Hint: If in doubt about how a function or method actually reacts to certain inputs, program rexxtry
offers the ability to interactively find out. It comes with ooRexx.

This document reflects my own experiences with ooRexx 5.0 and 5.1 running on Windows 7, 8.1 and 10.
The latest build I installed was r12924 dated 21 Nov 2024. This reference was created in my spare time.
Be prepared to encounter typos and factual errors.

From many details it will become obvious that English is not my native language. The original German
version is titled Open Object Rexx 5.1 Kurzreferenz für Klassiker. This English language edition was
created for the 36th International Rexx Language Symposium 2025 in Vienna, Austria.

© 1985-2025 Jochem Peelen, Greifswald
Text set with pdfLATEX in URW Palladio; diagram font: AdobeSourceCodePro

1 Character Strings

1.1 Informations About Strings

Length

 ╶─ ╶─ length() n string =

-- length('ooRexx') ⇒ 6
-- length('') ⇒ 0 -- null string
-- length("") ⇒ 0 -- null string

Returns the length of string, which is 0 in case of a null string.

Testing Strings (True/False)

 ╶─┬─╴ ╶─────────┬─╴ ╶─
 ├─╴ ╶───────────┤
 ├─╴ ╶─┤
 └─╴ ╶───┘

 ~StartsWith()
 ~EndsWith(
 ~caselessStartsWith(
 ~caselessEndsWith(

 flag haystack needle =

Returns 1 if string haystack starts/ends with needle or if both are equal. Returns 0 otherwise.1

 ┌─╴ ╶───────┐ ┌─╴ ╶─┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─ ╶─ ╶─┼───────────┼─╴ ╶─┼──────────────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶────────┘
 ~match()
 ~caselessMatch(

 length(needle)
 flag haystack pos needle
 needpos needlen

 1
 = , , ,
 > 0

Returns 1 if string needle starts in column pos of haystack, else 0. By using needpos and needlen, only a
substring of needle (!) will be compared.

 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─ ╶─
 └─╴ ╶─┘
 ~matchChar()
 ~caselessMatchChar(
 flag string pos bytelist = ,
 > 0

Returns 1 if the character at column pos of string is also in bytelist, else 0. A 0 will also be returned if
string or bytelist are null strings or if pos is beyond the length of string.

 ╶─ ╶─ ╶─┬─╴ ╶─┬─
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 │ │
 │ │
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 └─╴ ╶─┘

 ╶──╴ ╶──╴ │

 datatype()

 datatype()

 flag string

 0 false
 1 true

 string

 = , 'A' -- Alphanumeric a-z, A-Z, 0-9
 'M' -- Mixed case a-z, A-Z
 'L' -- Lowercase a-z
 'U' -- Uppercase A-Z
 'X' -- heXadecimal 0-9, a-f, A-F, ''
 'B' -- Binary 0, 1, ' ', ''
 'O' -- lOgical == 0 | == 1 | .false | .true
 'N' -- Numeric any format
 'W' -- Whole number e.g. 12, -2.0, 3E4
 -- "digits only" use VERIFY()
 --
 '9' -- 9digits whole number <= 999999999 (9 digits)
 'I' -- Internal 32bit: <= 9 | 64bit: <= 18 digits
 'S' -- Symbol valid as name or constant
 'V' -- Variable valis as name
Alternative format:

 ⇒ NUM if number CHAR if anything else or null string

Returns 1 if string is of the data type indicated by the letter, else 0. If the alternative format without
type letter is used, NUM will be returned if string is numeric, else CHAR.

1 Caseless does not recognize foreign language umlauts or diacritical symbols as letters.

3

1 Character Strings

Searching in Strings

 ┌─╴ ╶─┐ ┌─╴ ╶─────┐ ┌─╴ ╶───┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼───────┼─╴ ╶─┼─────────┼─╴ ╶─┼───────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶──┘
 verify()
 {all}
 pos haystack bytelist
 start length

 'N' 1
 = , , , ,
 'M'
 > 0 >= 0

-- verify(4711,'0123456789') ⇒ 0 no unwanted character
-- verify(3.14,'0123456789') ⇒ 2 position of the first unwanted
-- verify('','0123456789') ⇒ 0 null string
--
-- verify('Marder','0123456789','M') ⇒ 0 no character from search list (digits)
-- verify('Leopard2A7','0123456789','M') ⇒ 8 position of the first digit
-- verify('Satzende. ','-!.;:','M') ⇒ 9 '.' at position 9

In N[omatch] mode, bytelist acts as a list of valid characters. A 0 for „none invalid“ is returned if all
characters of haystack are also in bytelist – or if haystack is a null string. Otherwise the position of the
first invalid character in haystack is returned.
In M[atch] mode, bytelist acts as a list of unwanted characters. A 0 for „none unwanted“ is returned if no
character from bytelist is present in haystack. Else position of the first unwanted character in haystack is
returned.
Use start and length to limit the comparison to a substring of haystack. Length 0 always returns 0.

 ┌─╴ ╶─────┐ ┌─╴ ╶──┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 ┌─╴ ╶─────┐ ┌─╴ ╶──┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘

 pos()

 ~pos()
 ~caselessPos(

 {all}
 pos needle haystack
 start length

 {all}
 pos haystack needle
 start length

 1
 = , , ,

 > 0 >= 0

-- pos('9','12345678901234567890') ⇒ 9
-- pos('9','12345678901234567890',15) ⇒ 19
-- pos('9','12345678901234567890',15,3) ⇒ 0 no '9' in positions 15-17

method call:
 1
 = , ,

 > 0 >= 0
-- 'abcdefghijklmno'~caselesspos('DEF') ⇒ 4

Returns the position of the first character of needle in haystack or 0 if needle is not found.

 ┌───╴ ╶───┐ ┌─╴ ╶──┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘
 ~contains()
 ~caselesscontains(

 {all}
 flag haystack needle
 start length

 1
 = , ,

 > 0

Works like pos(), but returns either 1 or 0, as used in conditional terms (page 56).

 ╶─ ╶─ ╶─ ╶─

 ╶─┬─╴ ╶─────────┬─╴ ╶─
 └─╴ ╶─┘

 countstr()

 ~countStr()
 ~caselesscountStr(

 n needle haystack

 n haystack needle

 = ,

-- countstr('sport','Transport') ⇒ 1

Method call:

 =

Counts how often needle is completely contained in haystack.

4

1.1 Informations About Strings

 ┌─╴ ╶──┐ ┌─╴ ╶───┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────────────────┼─╴ ╶─┼───────────┼─
 └─╴ ╶─────────────┘ └─╴ ╶──┘
 ╶─────╴ ╶─────

 ┌─╴ ╶──┐ ┌─╴ ╶───┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────────────────┼─╴ ╶─┼───────────┼─
 └─╴ ╶─┘ └─╴ ╶─────────────┘ └─╴ ╶──┘
 ╶─────╴ ╶─────

 lastpos()

 ~lastpos()
 ~caselessLastpos(

 length(haystack) {all}
 pos needle haystack
 start length

 length(haystack) {all}
 pos haystack needle
 start length

 = , , ,

 > 0 counted > >= 0 <

-- lastpos('9','12345678901234567890') ⇒ 19
-- lastpos('9','12345678901234567890',15) ⇒ 9
-- lastpos('9','12345678901234567890',15,3) ⇒ 0 no '9' in positions 15, 14 or 13 ('345')

Method call:

 = , ,

 > 0 counted > >= 0 <

Begins the search for needle at the last character of haystack and scans toward the first character (←).
The returned position (first character of needle) is counted as usual (→). If needle is not found, or either
string is a null string, 0 is returned.
start (→) begins the scan at any other position of haystack.
length specifies how many characters of haystack are scanned (←). 0 is allowed and will return 0.

Comparing Strings

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼───────┼─
 └─╴ ╶─┘

 ┌─╴ ╶─┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 compare()

 ~compare()
 ~caselesscompare(

 pos stringa stringb
 pad

 pos stringa stringb
 pad

 ' '
 = , ,

Method call:
 ' '
 = ,

Returns 0 if both strings are equal. Else the position of the first not matching character is returned. If
one string is shorter, it will be padded with character pad before the comparison.

 ┌───╴ ╶───┐ ┌─╴ ╶──┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘
 ~compareTO()
 ~caselesscompareTO(

 {all}
 flag stringa stringb
 start length

 0 stringa = stringb
 1 stringa > stringb
 -1 stringa < stringb

 1
 = , ,

 > 0 >= 0

By returning 0, 1, or -1 it is reported if the strings are equal or which is the larger of the two, based on
the sorting sequence for character strings. No padding is done.
Use start and length to limit the comparison to a substring of the input. Length 0 will always return 0.

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────────────┼─
 └─╴ ╶─────┘

 ┌─╴ ╶─┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────────────┼─
 └─╴ ╶─┘ └─╴ ╶─────┘

 abbrev()

 ~abbrev()
 ~caselessAbbrev(

 length(short)
 flag long short
 minlength

 length(short)
 flag long short
 minlength

 = , ,

-- abbrev('METHODE','METH',4) ⇒ 1 true
-- abbrev('METHODE','meth',4) ⇒ 0 false
-- abbrev('METHODE','METT',4) ⇒ 0 false

Method call:

 = ,

-- 'METHODE'~caselessAbbrev('METH',4) ⇒ 1
-- 'METHODE'~caselessAbbrev('meth',4) ⇒ 1
-- 'METHODE'~caselessAbbrev('m',0) ⇒ 1 -- sic
-- 'METHODE'~caselessAbbrev('me',3) ⇒ 0
-- 'METHODE'~caselessAbbrev('',3) ⇒ 0
-- 'METHODE'~caselessAbbrev('') ⇒ 1 -- sic

Returns 1 if long starts with the characters of short, otherwise 0. A minimum length of short may be
required.

5

1 Character Strings

1.2 Truncation and Padding

 ┌─╴ ╶─┐
─┬──╴ ╶───┬─╴ ╶─ ╶─ ╶─ ╶─┼───────┼─
 └──╴ ╶──┘ └─╴ ╶─┘
 left()
 right(
 string length
 pad

 ' '
 , ,
 >= 0

-- left('ooRexx',2) ⇒ 'oo'
-- left('ooRexx',12) ⇒ 'ooRexx '
-- left('ooRexx',12,'_') ⇒ 'ooRexx______'
--
-- right('ooRexx',2) ⇒ 'xx'
-- right('ooRexx',12) ⇒ ' ooRexx'
-- right('ooRexx',12,'_') ⇒ '______ooRexx'

Returns a string of length, by truncating or padding with pad as required. Left makes the first character
of string the leftmost character of the result. Right makes the last character of string the rightmost
character of the result and, if necessary, truncates on the left.

 ╶─ ╶─ ╶─ ╶─ copies() string n ,

-- copies('abc',3) ⇒ 'abcabcabc'
-- copies('abc',0) ⇒ ''
-- copies('',5) ⇒ '' null string is not changed

Returns n copies of string.

 ┌──╴ ╶──┐
─┬─╴ ╶─┬─╴ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘ └──╴ ╶──┘
 center()
 centre(
 string length
 pad

 ' '
 , ,

-- center('abc',23) ⇒ ' abc '
-- center('abc',23,'.') ⇒ '..........abc..........'
-- center(' abc ',23,'.') ⇒ '......... abc'
-- center('abc',0) ⇒ ''

Returns a string of length länge with string centered in it. The result is truncated or padded with pad as
necessary. If an odd number of characters has to be removed or added, the right half has one character
more truncated or added.

1.3 Read Parts of Strings

 ╶─ ╶─ ╶─ ~subchar() byte haystack pos =
 > 0

 -- 'ooRexx'~subchar(4) ⇒ 'e'
 -- 'ooRexx'~subchar(7) ⇒ ''

Returns the character from position pos in haystack or the null string if pos is beyond the end of haystack.

 ┌─╴ ╶──┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼──────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─┘
 substr()
 {all}
 haystack start
 length pad

 ' '
 , , ,
 > 0
 >= 0

-- substr('abcdefgh',4) ⇒ 'defgh'
-- substr('abcdefgh',4,3) ⇒ 'def'
-- substr('abcdefgh',12) ⇒ '' null string if length undefinded
-- substr('abcdefgh',12,3) ⇒ ' ' 3 pad blanks due to length = 3

Returns the part of haystack that starts at position start and is length characters long. If length goes
beyond the end of haystack, character pad is used for padding.

6

1.4 Changing Data in Strings

Digression: Keyword PARSE

The following template is just intended to jog the memory. The large number of possibilities offered by
the parse keyword are described in chapter 9 of the ooRexx Reference. An important feature is its ability
of multiple –including overlapping– assignments in a single step.

 parse var

 parse var 4 13 19 21

 parse var

 parse var 9 17

 parse var 'CD ' ' '

 parse var (separ1) (separ2)

 parse var =(col1) =(col2)

 example

-- Reminder of format ... for data in variables:

-- +....1....+....2..
example = ' ABCD EFGH IJKL ' -- data in variable

 example name1 name2 -- by position

say '>'name1'< >'name2'<' ⇒ >ABCD EFGH< >ei<

 example . word2 word3 . -- by word (note closing dot)

say '>'word2'< >'word3'<' ⇒ >EFGH< >IJKL<

 example name1 . name2 -- by position and word combined

say '>'name1'< >'name2'<' ⇒ >EFGH< >IJKL<

 example name2 -- separated by quoted strings

say '>'name2'<' ⇒ >EFGH<

separ1 = 'CD '
separ2 = ' '
 example name2 -- separators in variables

say '>'name2'<' ⇒ >EFGH<

col1 = 4
col2 = 13
 example name3 -- positions in variables

say '>'name3'<' ⇒ >ABCD EFGH<

 ╶─┬─╴ ╶─┬─╴ ╶─
 ├─╴ ╶─┤
 └─╴ ╶────────────┘

 parse value with

 parse value with parsing template as above
 function(arg1,...,argn)
 arrayname[n]

-- Format for character strings, function calls
-- and array item notation:

 ' eins zwei drei '

 -- new: array item

1.4 Changing Data in Strings

Changing or Deleting Characters

 ┌───╴ ╶────┐ ┌─╴ ╶─┐ ┌─╴ ╶─────┐ ┌─╴ ╶──┐
 ╶─ ╶─ ╶─┼────────────┼─╴ ╶─┬───────────┬─╴ ╶─┼───────┼─╴ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘
 translate()
 {all}
 string
 outbytes inbytes pad start length

 ' ' ' ' 1
 , , , , ,

 > 0 >= 0
-- translate('1,000,000.00',',.','.,') ⇒ '1.000.000,00'
-- translate('FöHNäRGER','ÄÖÜ','äöü') ⇒ 'FÖHNÄRGER'
-- translate('--+--*+--','#','+',,1,5) ⇒ '--#--*+--' -- 2nd '+' is beyond right limit
-- translate('beliebig') ⇒ 'BELIEBIG' -- a single argument is folded UPPER

Returns string with the characters of list inbytes replaced. The replacement is taken from the identical
position in list outbytes. By using start and length the translation can be limited to a substring of string.
If inbytes is a null string or blank, no translation occurs. Should inbytes be missing, all characters in
string are replaced by blanks.
If outbytes is shorter than inbytes it will be padded with pad. Should outbytes be a null string, all
characters defined by inbytes are translated to the pad character.
If string is the only argument, letters a...z are are folded to uppercase.

7

1 Character Strings

 ┌─╴ ╶─┐
 ╶──╴ ╶──╴ ╶──╴ ╶──╴ ╶──╴ ╶──╴ ╶──┼─────────┼─
 └─╴ ╶─┘

 ┌─╴ ╶─┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶──╴ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 changestr()

 ~changestr()
 ~caselesschangestr(

 {all}
 needle haystack newneedle
 count

 {all}
 haystack needle newneedle
 count

 , , ,

 >= 0
-- changestr('abcd','ABCDabcdxyz','--') ⇒ 'ABCD--xyz'
-- changestr('abcd','ABCDabcdxyz','') ⇒ 'ABCDxyz' null string deletes
-- changestr('ab','ababababab','x',2) ⇒ 'xxababab'

Method call:

 , ,

 >= 0
-- 'ABCDabcdxyz'~CaselessChangeStr('abcd','.;') ⇒ '.;.;xyz'

Returns haystack with all occurrences of string needle changed to newneedle, which can be shorter or
longer. If newneedle is a null string, all occurrences of needle are effectively deleted. Using count can limit
the changes to the first occurrences of needle.

 ╶─ ╶─ reverse() string

Returns the characters of string in reverse order gnirts.

─┬─╴ ╶─┬─╴ ╶─
 └─╴ ╶─┘

 ╶─┬─╴ ╶──┬──
 └─╴ ╶──┘

 lower()
 upper(

 ~lower
 ~upper

 string

 string

-- lower('ooRexx') ⇒ 'oorexx'
-- upper('ooRexx') ⇒ 'OOREXX'

method call:

This is self-explaining. Remember that only the 26 ordinary letters are dealt with.

Overwriting, Inserting or Deleting Parts

 ┌───╴ ╶───┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─────────┘ └─╴ ╶─┘

 ┌─╴ ╶─┐ ┌─╴ ╶─┐
─╴ ╶─ ╶─ ╶─ ╶─ ╶─ ╶─┼──────────────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─────────┘ └─╴ ╶─┘

 overlay()

 replaceAT

 ~replaceAT()

 length(needle)
 needle haystack
 start length pad

 needle

 start

 length(needle)
 haystack needle start
 length pad

 1 ' '
 , , , ,

 > 0 >= 0

-- overlay('---','abcdefg') ⇒ '---defg'
-- overlay('---','abcdefg',3) ⇒ 'ab---fg'
-- overlay('---','abcdefg',3,1) ⇒ 'ab-defg'
-- overlay('---','abcdefg',3,0) ⇒ 'abcdefg' no change due to length 0
-- overlay('123','abcdefg',10) ⇒ 'abcdefg 123' start > length(haystack)
-- overlay('','abcdefg') ⇒ 'abcdefg' null string is allowed

Format of the equivalent method (argument is not optional here!):

 ' '
 , , ,
 > 0
 >= 0

Returns haystack overwritten from position start with string needle. If needle is a null string, nothing is
changed. If length exceeds needle, padding with pad is applied, as is the case if start is beyond the length
of haystack.

8

1.5 Character Types

 ┌──╴ ╶───────┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼────────────┼─╴ ╶─┼──────────────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─────────┘ └─╴ ╶─┘

──

 insert()
 length(needle)
 needle haystack
 afterpos length pad

 needle

 0 ' '
 , , , ,

 >= 0
-- insert('---','abcdefg') ⇒ '---abcdefg'
-- insert('---','abcdefg',3) ⇒ 'abc---defg'
-- insert('---','abcdefg',10) ⇒ 'abcdefg ---'
-- insert('---','abcdefg',3,1) ⇒ 'abc-defg'
 insert('','abcdefg') ⇒ 'abcdefg' null string is no error
-- insert('','abcdefg',3,5,'_') ⇒ 'abc_____defg' 5 pad bytes inserted
-- insert('---','abcdefg',3,0) ⇒ 'abcdefg' no change due to length 0

Returns haystack with string needle inserted, starting in the position following afterpos. Existing characters
to the right of afterpos are shifted accordingly.

 ┌─╴ ╶─────┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼─────────┼─╴ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘
 delstr()
 {all}
 string
 start count

 1
 , ,

 > 0 >= 0

Returns string from which count characters are deleted, starting at position start. Remaining characters
to the right of the deleted substring are shifted to the left accordingly.

1.5 Character Types

 ┌─╶───╴ ╶───────────────────┐
 │ ┌─╴ ╶─ ╶─ ╶─┐ │
 ╶─┴──┼─────────────────────┼──┴─
 ├─╴ ╶─ ╶─ ╶──┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 │ │
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 ├──────╴ ╶──────┤
 └──────╴ ╶─────┘

 xrange()
 start stop

 < ,
 '00'x , 'FF'x -- 256 bytes hex 00...FF

 , -- subset from 256 bytes
 'UPPER' -- A...Z
 'LOWER' -- a...z
 'DIGIT' -- 0...9
 'ALPHA' -- A...Z a...z
 'ALNUM' -- A...Z a...z 0...9
 'PUNCT' -- !"#$%&'()*+,-./:;<=>-@[\]^_‘{|}~
 -- hex 21...2F 3A...3F 40 5B...60 7B...7E
 'BLANK' -- hex 09 and 20
 'SPACE' -- hex 09...0D and 20
 'CNTRL' -- hex 00...1F and 7F
 'GRAPH' -- combines UPPER LOWER DIGIT PUNCT
 'PRINT' -- GRAPH and hex 20
 'XDIGIT' -- 0...9 A...F a...f

-- xrange('LOWER','DIGIT') ⇒ abcdefghijklmnopqrstuvwxyz012345678
-- xrange('F0'x,'0F'x) ⇒ hex F0...FF followed by 00...0F (32 bytes)

Returns a string containing all characters of the requested type. If more than one type argument is
given, the result is a concatenated, continuous string. If two single characters are provided and start is
larger than stop, the result is a concatenation of the bytes from start to hex FF, immediately followed by
the bytes from hex 00 to stop. The default is hex 00...FF.

9

2 Word Strings

In word strings, the words are separated by blanks (hex 20) or tabulator characters (hex 09). All
other characters or strings of characters are „words“. The word string may have leading and trailing
blanks/tabs.

 ╶─ ╶─ words() n wordstring =

-- words(' eins zwei drei ') ⇒ 3
-- words('') ⇒ 0

Returns the number of words in wordstring or 0 for a null string.

 ╶─ ╶─ ╶─ ╶─ wordindex() pos wordstring n = ,
 > 0
-- +....1....+....2.
-- wordindex(' eins zwei drei ',2) ⇒ 9

Returns the character position within wordstring at which the n-th word begins.

 ╶─ ╶─ ╶─ ╶─ wordlength() len wordstring n = ,
 > 0
-- wordlength('un deux trois ',2) ⇒ 4

Returns the character position where the n-th Word in wordstring starts.

2.1 Searching in Word Strings

 ┌───╴ ╶───┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘

 ┌───╴ ╶───┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 wordpos()

 ~wordpos()
 ~caselessWordPos(

 n needle wordstring
 start

 n wordstring needle
 start

 1
 = , ,

 > 0

-- wordpos('public','reality must take precedence over public relations') ⇒ 6
-- wordpos('take precedence','reality must take precedence over public relations') ⇒ 3
-- wordpos('','reality must take precedence over public relations') ⇒ 0
-- wordpos('public','') ⇒ 0

method call:
 1
 = ,

 > 0

Searches in wordstring for needle, which itself may be one or more words. Returns 0 if not found. Else
the character position is returned, where needle starts within wordstring. If used, start is the number of
the word where the search begins.
0 is always returned if needle and/or wordstring are null strings or if start exceeds the number of words
in wordstring.

 ┌───╴ ╶───┐ ┌─╴ ╶──┐
 ╶─┬─╴ ╶─────────┬─╴ ╶─ ╶─┼─────────┼─╴ ╶─┼──────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘
 ~containsWord()
 ~caselesscontainsWord(

 {all}
 flag wordstring needle
 start length

 1
 = , ,

 > 0

Works like wordpos(), but returns either 1 or 0, as used in conditional terms (page 56).

10

2.2 Read or Delete Parts of Word Strings

2.2 Read or Delete Parts of Word Strings

 ╶─ ╶─ ╶─ ╶─ word() wordstring n ,
 > 0

-- word(' eins zwei drei ',2) ⇒ 'zwei'
-- word(' eins zwei drei ',5) ⇒ ''

Returns the n-th word from wordstring.

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘
 subword()
 {all}
 wordstring n
 count

 , ,
 > 0
 >= 0

-- subword(' abcd efgh ijkl ',2) ⇒ 'efgh ijkl'
-- subword(' abcd efgh ijkl ',1,1) ⇒ 'abcd'
-- subword(' abcd efgh ijkl ',4) ⇒ ''

Returns count words from wordstring, starting with the n-th word.

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘
 delword()
 {all}
 wordstring n
 count

 no 4th word
 count 0

 , ,
 > 0
 >= 0

-- delword(' abcd efgh ijkl ',1) ⇒ ' '
-- delword(' abcd efgh ijkl ',2,1) ⇒ ' abcd ijkl '
-- delword(' abcd efgh ijkl ',4) ⇒ ' abcd efgh ijkl '
-- delword(' abcd efgh ijkl ',1,0) ⇒ ' abcd efgh ijkl '

Returns wordstring after removal of count words, starting with the n-th word. With each deleted word,
its trailing blanks are also deleted.

 ┌──╴ ╶────┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼─────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─┘
 space() wordstring
 count pad

 1 ' '
 , ,

-- space(' abcd efgh ijkl ') ⇒ 'abcd efgh ijkl'
-- space(' abcd efgh ijkl ',0) ⇒ 'abcdefghijkl'
-- space(' abcd efgh ijkl ',3,'-') ⇒ 'abcd---efgh---ijkl'

Returns wordstring padded with count characters pad. Instead of blanks, any character may be used. If
count is less than an existing gap, characters are deleted accordingly. Function space() changes the gaps
between words; see also strip().

 ┌─╴ ╶─┐ ┌─╴ ╶──────┐
 ╶─ ╶─ ╶─┼───────┼─╴ ╶─┼────────────┼─
 ├─╴ ╶─┤ └─╴ ╶─┘
 └─╴ ╶─┘

 strip() string
 bytelist

 'B' ' ' -- Both
 , ,
 'L' -- Leading
 'T' -- Trailing

-- strip(' abcd efgh ijkl ') ⇒ 'abcd efgh ijkl'
-- strip(' abcd efgh ijkl ','L') ⇒ 'abcd efgh ijkl '
-- strip(' abcd efgh ijkl ','T') ⇒ ' abcd efgh ijkl'

Returns string after removal of Leading, Trailing) or (default) Both blanks. Using bytelist, multiple
characters to be deleted can be supplied. If bytelist is a null string, nothing is deleted. Function strip()
changes the characters at both ends of a word string or character string; see also space().

11

3 Program Loops

Keyword do is used in ooRexx for simple do ... end blocks as well as loops. For the latter, additional
keywords have to follow on the line after do. Since ooRexx 3.2 loops can also be defined using loop ...
end.

3.1 Simple Loops

 │
 │
 │
 │
 │

 leave

 do forever loop

 leave leave

 end end

-- "endless" loops may be ended with keyword

 equivalent:

 if ... then if ... then

Both examples show a loop that runs indefinitely, unless one of the keywords leave, while or until is
used as explained later. In all following examples, loop could be used in place of keyword do.

 do

 end

 wholenumber
 >= 0

 n
 n

 ...
 ...

-- do 25 ⇒ loops 25 times
-- = 0
-- do ⇒ loop is skipped entirely

In this case, the number of iterations is defined right at the beginning. Value wholenumber must be a
positive whole number, which can be the contents of a variable. It also can be a function or method call
that returns a whole number. If the number is 0, the loop is skipped. Processing immediately continues
at the first instruction after end.

3.2 Using an Iteration Variable

 ┌─╴ ╶──────┐
 ╶─┬────────────────┬─┼─────────────┼─┬───────────────┬─
 └─╴ ╶─ ╶─┘ └─╴ ╶─ ╶─┘ └─╴ ╶─ ╶─┘

 to for before
 After

 by
 do
 to by for

 incr iter

 iter start
 stopval incr count

-- and are tested each iteration
-- each iteration is added to

 1
 ... = ...

-- do i=1 to 5 ⇒ iterations with i=1 ... 5
-- do i=5 to 1 by -1 ⇒ iterations with i=5 ... 1
-- do i=3 to 5 by 0.25 ⇒ iterations with i=3, 3.25, 3.50 ... 5.00
-- do i=1 to 5 for 3 ⇒ iterations with i=1 ... 3; stopped by FOR
-- do i=1 to 3 for 5 ⇒ iterations with i=1 ... 3; stopped by TO
-- do i=1 ⇒ "endless" loop with i=1, 2, 3 ...
-- do i=2 by 2 ⇒ "endless" loop with i=2, 4, 6 ...

Before the instructions inside the loop are executed, iteration variable iter is initialized to numeric value
start. It need not be a whole number and may be negative. After each iteration, the by value incr, which
my be negative, is added1 to iter. Like start, incr need not be a whole number and may be negative.

1 The arithmetic rules as described on page 16 apply.

12

3.2 Using an Iteration Variable

iter can be modified within the loop to change loop execution. This variable continues to be available
after the loop has ended and can be used like any other variable.
to und by belong together. If by is not specified, incr is 1. Keyword by without to results in an infinite
loop. It has to be stopped by other keywords like leave for example.
for is independent from the iteration variable and sets an internal counter for the number of iterations.
If this is reached, the loop ends unconditionally. If count is represented by a variable, changing it
after loop start has not effect. During the development phase of a program, for can be used to avoid
unintended spin loops, which would otherwise require externally forcing the program to crash. Do not
forget to remove such for keywords in time.

 end

 do to

 do for

 do to

 end

 end

 end

 -- Keyword may have the iteration variable name appended as label
 -- (this is optional but really improves readability)

 num = 8
 x=1 num
 ...
 y=0 num
 ...
 z=1 3
 ...
 z
 ...
 y
 ...
 x
 say x z ⇒ 9 4 -- Iteration variables survive the loop end

The name of the iteration variable iter may be appended as a label to the end keyword for this loop.
It makes obvious to which do line the end belongs. Particularly if nested loops are used, the code is
much easier to read. This name may also be appended to keywords leave and iterate (see page 15). The
ooRexx interpreter reports label inconsistencies, but does not need them for correct program execution.

Controlling Loops by Comparisons

Either while or until at the end of a do line can be used to conditionally stop further iterations of a
loop. As long as while is true before the start of an iteration, execution will continue. If at the end of an
iteration, condition until is true, the loop ends.
The same comparison operators apply as shown on page 56 for if and when. Also the same logical
operators & (AND), | (OR), && (XOR) and the comma (conditional AND) can be used. It may not
always be obvious at first sight what the result for loop execution is:

 ╶─ ╶─

 while before

 do while condition

 num num

-- is tested the pending iteration begins

-- do while <= 10 ⇒ Stop when exceeds 10

As long as the while condition is true, the loop continues.

 ╶─ ╶─

 until after

 do until condition

 num num

-- is tested each iteration

-- do until > 10 ⇒ Stop when exceeds 10

When the until condition is true, the loop stops.

13

3 Program Loops

Sequence of Steps per Iteration

 Before
 to

 for
 while .false

 Begin
 counter

 iterate

 After
 until .true
 by

 iter stopval.
 wholenumber
 count

 loopnum

 incr iter.

 each iteration of the loop:
 1. Leave if iteration control is larger than
 2. Leave if is exceeded.
 3. Leave if is exceeded.
 4. Leave if condition is

 iteration:
 5. If keyword is active, increase by 1.
 6. Execute the instructions in the loop.
 If is encountered, skip remainder of this iteration.

 each iteration of the loop:
 7. If condition is leave the loop.
 8. Add to iteration control
 9. Continue with step 1.

Unless step 7 has stopped the loop, step 8 –incrementing the iteration variable iter– is always done.
After that, steps 1 to 3 before the next iteration may also stop the loop. Consequently, in most cases iter
after the loop already has the value for the next iteration, for example value 9 after a loop with i=1 to 8
ended. Only if the loop was stopped because of the until condition or the leave keyword, iter keeps the
value it had during the last iteration of the loop.

3.3 New Loops for Data Collections

In ooRexx 5.1 there are 13 type of data collections defined. Two new types of loop were created in view
of these collections. Welcome advantages are: it is not necessary to know the size of the collection.
Also, empty elements (unused index locations amid locations with data) are allowed. They are ignored
by the loops. Here, the behaviour with collection type array will be used as example to demonstrate
how the new loop types basically work. I have no experience with the other collection types.
At the start of the loop, a logical „status snapshot“ of the data collection is taken. Changing data is
possible, but remains invisible inside the still running loop.
After the loop ends, the variables ixvar and elementvar –if used– continue to exist in the program with
their last value from the loop.

 ╶─ ╶─ ╶─ ╶─┬───────────────┬─
 └─╴ ╶─ ╶─┘
 do over
 for

 end end

 elementvar myarray
 count

 elementvar elementvar

 ...
 ...
 -- may be used as label

The loop iterates only through those index locations of myarray that have data (items). On each iteration,
elementvar contains a copy of the current data element (item). Because Array is a data collection of type
Ordered, the sequence will strictly be ascending. For other types of data collections the sequence is
undefined.
If no array myarray exists, the name is treated as a simple variable. The loop iterates just once and
elementvar receives the value of the variable. If no variable of this name exists, it will be the name in
uppercase.
The name of variable elementvar can be appended as a label to the corresponding end keyword.
Examples are shown on pages 52, 54 and 46.

 ┌──╶──────────────────┐
 ╶─┼─╴ ╶─ ╶─┼─╴ ╶─ ╶─┬───────────────┬─
 └─╴ ╶─ ╶─────┘ └─╴ ╶─ ╶─┘
 do with item over
 index for
 elementvar myarray
 ixvar count

 ixvar elementvar

 <

--Neither nor may be used as label

This do...with...over loop iterates the same way through myarray as do...over above does. If only
keyword item is used, the result is the same as above. In addition, or alone, keyword index can be used
to put the current array index location in variable ixvar. Not all collection types have an index.
With this loop variant, neither the name of elementvar nor ixvar can be used as end label.

14

3.4 Additional Control Keywords

 do with item over
 say
 end

 elementvar myarray
 elementvar

This example shows coding of a do...with...over loop to produce the same result as a do...over loop
when processing an array.

3.4 Additional Control Keywords

These apply to all types of loops.

 ┌──╶──────────────────┐
 ╶─┼─────────────────────┼─
 ├─╴ ╶─ ╶─┤
 └─╴ ╶─ ╶──────┘

 do do loop
 counter
 label end
 loopnum
 name

 <
 ... -- Both must immediately follow after or
 -- Counter of successfully startet iterations 0, 1, 2 ...
 -- For use with keyword of this loop

If used, these two keywords must appear immediately following keyword do but may be used in any
sequence.
counter initializes variable loopnum to 0. Any successfully started iteration will increment it by exactly
1. Ending an iteration with keywords leave or iterate will not change loopnum. Variable loopnum can
be read by the program, but any change will be overwritten by ooRexx at the beginning of the next
iteration. This is different from the iteration variable, where ooRexx accepts and recognizes changes by
the program code.
Keyword label defines a name that may as label of the corresponding end keyword. It makes this
readability feature available in loops which otherwise do not provide a means to identify which do...end
keywords belong together.

Keywords LEAVE and ITERATE

Keyword leave immediately stops the current iteration and end the loop. Processing continues with
the line after the end keyword of the current loop.
Keyword iterate stops the current iteration and skips its remaining instructions. If an until condition is
defined and true, the loop ends. Else the next iteration is started.

Nested Loops
If loops are nested and the end keywords have a name label (name of iteration variable, or with keyword
label), it is possible to control an outer loop from within an inner loop. This works across multiple
nesting levels.
Instruction iterate name, when used in an inner loop, will terminate it and result in an iterate action of
the outer loop. The affected outer loop is identified by its end name statement.
Instruction leave name works the same way, but leaves the outer loop.

15

4 Arithmetic

On an ordinary Lenovo E15G4 Notebook, ooRexx needs 0.30 seconds for calculating a 1000 m long
trajectory, using a fourth order Runge-Kutta-Nyström numerical integration. This is over 7 times faster
than the 2.15 seconds time of flight in reality. For an interpreted language, ooRexx computes quite fast,
particularly on current hardware.
If required, ooRexx can compute with a precision which is only limited by available storage (RAM). As
an example, let us display the number 2 to the power of 256. Using the default precision of 9 significant,
digits the result is displayed as:

 +say 2**256 ⇒ 1.15792089E 77

To raise precision to 80 digits, the instruction is:

 numeric digits 80

and all 78 digits of the result are displayed:

say 2**256 ⇒ 115792089237316195423570985008687907853269984665640564039457584007913129639936

This ability is unusual for a general programming language. In addition, apart from the mathematical
library rxmath (16 digits) that comes with ooRexx, an external library rxm is available.1 It offers nearly
unlimited precision for logarithm, exponential and trigonometric functions. For experimenting with
the effects of increased precision, this comes in handy.

4.1 How Rexx Processes Numbers

The floating point arithmetic of IEEE 754, which has its origins in classic Rexx, is used with a default
precision of 9 digits. In practice, this means:

• Each number ooRexx encounters is saved internally as a character string.
• If an arithmetic operation is encountered, the character string will be converted to a floating point

number according to IEEE 754 and rounded to 9 significant digits. For example:

1.1234512345 ⇒ 1.12345123
3210.1234512345 ⇒ 3210.12345

• The result of the operation will also be rounded to 9 digits and then converted back to a character
string.2

• If more places than the current digits setting are needed before the decimal point, ooRexx uses
exponential form for this number. Function format() allows to convert any number to exponential
form.

At any time in the program, keyword numeric digits allows to change the precision.

1 rxm.cls can be be downloaded from rosettacode.org free of charge; see page 19.
2 ooRexx tries to save both formats internally to reduce conversions.

16

4.2 Operations and Functions

4.2 Operations and Functions

The following examples use the numeric digits 9 default, unless noted otherwise.

 numeric digits 16

 modulo

5 + 3 ⇒ 8 -- addition
5 - 3 ⇒ 2 -- subtraction
5 * 3 ⇒ 15 -- multiplication
5 / 3 ⇒ 1.66666667 -- division
5 / 3 ⇒ 1.666666666666667 -- division after

5 // 3 ⇒ 2 -- remainder, but see
12.8 // 2.5 ⇒ 0.3
5 % 3 ⇒ 1 -- whole number quotient
12.8 % 2.5 ⇒ 5
5 ** 3 ⇒ 125 -- whole number exponent or zero
5 ** -3 ⇒ 0.008

5**20 ⇒ 9.53674316E+13 -- exponential form
5**-20 ⇒ 1.048576E-14
5E2 + 0 ⇒ 500 -- same as 5 * 10**2
-5E2 + 0 ⇒ -500

 ╶─ ╶─ ╶─ ~modulo()

 wrong

 result dividend divisor =

 5~modulo(3) ⇒ 2
 (-5)~modulo(3) ⇒ 1
 -5~modulo(3) ⇒ -2 -- because interpreted as -(5~modulo(3))
 number = -5
 number~modulo(3) ⇒ 1

In ooRexx, the tilde character has priority over the minus sign. If used in the code, negative numbers
need to be put in parentheses to force correct interpretation of the expression. This is not necessary
if the negative number is represented by a variable or returned by a function call, because no minus
appears in the code.

 ╶─┬─╴ ╶─┬─
 └─╴ ╶───┘
 ~ceiling
 ~floor

 wrong

 number -- natural number towards +infinity
 -- natural number towards -infinity

 (2.12)~ceiling ⇒ 3
 (3)~ceiling ⇒ 3
 (-2.12)~ceiling ⇒ -2
 -2.12~ceiling ⇒ -3 -- because interpreted as -(2.12~ceiling)
 x = -2.12
 x~ceiling ⇒ -2

 (2.12)~floor ⇒ 2
 (3)~floor ⇒ 3
 (-2.12)~floor ⇒ -3

 ╶─ ╶─

 ╶─ ╶─

 ┌─╶─ ╶────┐
─┬─╴ ╶─┬─┴─╴ ╶─┴─
 └─╴ ╶─┘

 digits() numeric digits

 abs()

 sign()

 max()
 min(

 number number

 number

 number

 -- current setting

 -- absolute value of

 -- 1 | 0 | -1

 < , -- returns from a list of numbers...
 -- the largest
 -- the smallest

The list of numbers when determining the largest or smallest, is only limited by available storage.

17

4 Arithmetic

Formatting Numbers

 ┌───╴ ╶────┐ ┌───╴ ╶───┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼────────────┼─╴ ╶─┼───────────┼─╴ ╶─┼───────┼─╴ ╶─┼────────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶───┘
 format()

 {#} number

 {#} {#} {#} digits()
 number
 wholenum decimal exp estart
 > 0 >= 0 >= 0 >= 0

-- Read placeholder as: use places as required to display as it is

 , , , ,

 0 prevents
-- format(3.5678,4,2) ⇒ ' 3.57' exponential
-- format(-30,4,2) ⇒ ' -30.00' notation
-- format(30,,,,0) ⇒ '3.0E+1'
-- format(30,,,3,0) ⇒ '3.0E+001'
-- format(30,4,2,3,0) ⇒ ' 3.00E+001'

Returns number rounded to decimal decimal places. There will be wholenum places before the decimal
point, padded with blanks. If a minus sign is possible, increase wholenum by one. Insufficient space is a
runtime error. If not set, no padding will be done.
Setting estart to 0 will force exponential form, independent of the number. If not set, the default rule
mentioned above (whole number part exceeds numeric digits) applies.
If used, exp sets the places for the exponent, padded with 0. Value 0 prevents exponential form, even if
estart is 0. Insufficient space for the number is a runtime error. If not set, as many places as necessary
are used for the exponent.

 ┌─╴ ╶───────┐
 ╶─ ╶─ ╶─┼───────────┼─
 └─╴ ╶─┘
 trunc() number
 decimal

 0
 ,

-- trunc(3.14159) ⇒ 3
-- trunc(3.14159,4) ⇒ 3.1415
-- trunc(3.14159,7) ⇒ 3.1415900
-- trunc(12345678987.123,2) ⇒ 12345679000.00

Returns number cut off or padded with 0 to decimal places. If necessary, a decimal point is added. The
last example shown is due to the first processing step of rounding to 9 digits before the truncation is
done.

4.3 Included Library RXMATH

Part of ooRexx installation is a mathematical functions library (rxmath.dll) which contains C-Library
functions. To use it in an ooRexx program, add after the last program line the directive:

 rxmath::REQUIRES LIBRARY

-- This replaces the pre-version 4.0 instructions:
-- call RxFuncAdd 'MathloadFuncs','rxmath','MathLoadFuncs'
-- call MathloadFuncs

This in effect tells ooRexx to include library rxmath.dll in any search for unknown subprogram
names.
When testing this library with 2726 numbers, Walter Pachl3 found that in about 30 percent of the cases,
the last decimal place was off by 1 from the correct result. This will probably not affect ordinary use,
but should be known to users.

Number Pi
 ┌─╴ ╶─┐
 ╶─┼────────────┼─
 └─╴ ╶──┘
 RxCalcPi()
 digits()

 precisi

-- RxCalcPi() ⇒ 3.14159265
-- RxCalcPi(16) ⇒ 3.141592653589793

3 What’s Wrong with Rexx ? Presentation, IBM Sindelfingen 2004

18

4.4 External Library RXM

For this and all other RXMATH functions, the default is to use the current digits() value of the calling
program for rounding the result. For any value larger than 16, the library uses 16 (double precision of
the C-Library). Alternatively, a precision may be requested by using argument precisi which must be a
whole number in the range 1 to 16.

Logarithms and Powers
 ┌─╴ ╶─┐
─┬─╴ ╶──┬─╴ ╶─ ╶─┼────────────┼─
 ├─╴ ╶───┤ └─╴ ╶──┘
 ├─╴ ╶───┤
 └─╴ ╶─┘

 RxCalcSqrt()
 RxCalcLog(
 RxCalcExp(
 RxCalcLog10(

 digits()
 number
 precisi

 , -- square root
 -- natural logarithm
 -- power of e
 -- logarithm base 10

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼────────────┼─
 └─╴ ╶──┘
 RxCalcPower()
 digits()
 number exponent
 precisi

 , ,

Trigonometric Functions
 ┌─╴ ╶─┐ ┌─╴ ╶─┐
─┬─╴ ╶───┬─╴ ╶─ ╶─┼────────────┼─╴ ╶─┼───────┼─
 ├─╴ ╶───┤ └─╴ ╶──┘ ├─╴ ╶─┤
 ├─╴ ╶───┤ └─╴ ╶─┘
 └─╴ ╶─┘

 RxCalcSin()
 RxCalcCos(
 RxCalcTan(
 RxCalcCotan(

 digits()
 angle
 precisi

 'D' -- 360 Degrees
 , ,
 'R' -- 2 Pi Radian
 'G' -- 400 Gon

 ┌─╴ ╶─┐ ┌─╴ ╶─┐
─┬─╴ ╶───┬─╴ ╶─ ╶─┼────────────┼─╴ ╶─┼───────┼─
 ├─╴ ╶───┤ └─╴ ╶──┘ ├─╴ ╶─┤
 └─╴ ╶───┘ └─╴ ╶─┘

 RxCalcArcSin()
 RxCalcArcCos(
 RxCalcArcTan(

 digits()
 number
 precisi

 'D' -- 360 Degrees
 , ,
 'R' -- 2 Pi Radian
 'G' -- 400 Gon

Hyperbolic Functions
 ┌─╴ ╶─┐
─┬─╴ ╶───┬─╴ ╶─ ╶─┼────────────┼─
 ├─╴ ╶───┤ └─╴ ╶──┘
 └─╴ ╶───┘

 RxCalcSinH()
 RxCalcCosH(
 RxCalcTanH(

 digits()
 number
 precisi

 ,

4.4 External Library RXM

The same mathematical functions as RXMATH, but settable to much larger precision, are provided by
ooRexx class file rxm.cls authored by Walter Pachl. It is programmed in ooRexx, and consequently
not as fast as the compiled C library RXMATH. For the trajectory computation mentioned on page 16,
with a precision of 16 digits, RXM takes 1.22 seconds instead of 0.30 seconds. If precision is set to to 32
digits, runtime grows to 2.69 seconds. RXM internally uses a precision of 10 digits more than requested
(100 more for logarithm computation).
To use the RXM library, add after the last line of your program:

 rxm.cls::REQUIRES

Extension .cls for files containing ooRexx classes is a convention, not a fixed requirement. Since
February 2020 it is possible to leave it out, because ::REQUIRES now by default searches for .cls
files first.

REQUIRES and the ooRexx Prologue

If the target of a ::REQUIRES directive is an ooRexx file, it is automatically searched for a „Prologue“.
If it exist, its code is executed. The Prologue is formed by the code lines, if any, which precede the first
directive in the file. A directive is an instruction beginning with two colons ::... In the case of rxm.cls
the prologue only has a single code line:

 Attention:
.local~my.rxm = .rxm~new(16,"D") -- original prologue line
.local~my.rxm = .rxm~new(50,"R") -- changed prologue line 2024-12-23

19

4 Arithmetic

This creates a new object named .my.rxm which contains the attributes and methods of class RXM.
At the same time it sets default precision to 50 digits and selects the 2π circle (Radian) as trigonometric
unit.4 It makes the methods of the library callable by prefixing .my.rxm~ to it. Environment .local
is normally active and not explicitly needed.

.my.rxm~precision=32

.my.rxm~type='D'

When used in a program, these instructions change defaults to 32 digits and 360 degrees (D). Alterna-
tively, both parameters may be specified per method call. RXM is not able to automatically use the
precision of the calling program.

Methods in RXM

 ┌─╴ ╶──────┐
 ╶─┼───────────┼─
 └─╴ ╶─┘
 .my.rxm~pi()
 precisi

 16

-- .my.rxm~pi ⇒ 3.141592653589793
-- .my.rxm~pi(64) ⇒ 3.141592653589793238462643383279502884197169399375105820974944592

The parentheses () may be omitted if no argument is used.

Logarithms and Powers
 ┌─╴ ╶──────┐ ┌─╴ ╶──┐
─┬─╴ ╶─┬─╴ ╶─ ╶─┼───────────┼─╴ ╶─┼────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘
 .my.rxm~log()
 .my.rxm~exp(

 {e}
 number
 precisi base

 16
 , ,

-- .my.rxm~log(2) ⇒ 0.6931471805599453 log base e
-- .my.rxm~log(2,,10) ⇒ 0.3010299956639812 log base 10
-- .my.rxm~log(2,,2) ⇒ 1 log base 2
-- .my.rxm~exp(-0.5) ⇒ 0.6065306597126334 e power -0.5

 ┌─╴ ╶─────┐
 ╶─ ╶─ ╶─┼──────────┼─
 └─╴ ╶─┘
 .my.rxm~log10()

 ~log

 num
 digits

 16
 ,

-- internally uses

 ┌─╴ ╶──────┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼───────────┼─
 └─╴ ╶─┘
 .my.rxm~power() number exponent
 precisi

 16
 , ,

 ┌─╴ ╶──────┐
 ╶─ ╶─ ╶─┼───────────┼─
 └─╴ ╶─┘
 .my.rxm~sqrt() number
 precisi

 16
 ,

Trigonometric Functions
 ┌─╴ ╶──────┐ ┌─╴ ╶─┐
─┬─╴ ╶───┬─╴ ╶─ ╶─┼───────────┼─╴ ╶─┼─────┼─
 ├─╴ ╶───┤ └─╴ ╶─┘ ├─╴ ╶─┤
 ├─╴ ╶───┤ └─╴ ╶─┘
 └─╴ ╶─┘

 .my.rxm~sin()
 .my.rxm~cos(
 .my.rxm~tan(
 .my.rxm~cotan(

 angle
 precisi

 16 D 360 Degrees
 , ,
 R 2 pi Radian
 G 400 Gon

 ┌─╴ ╶──────┐ ┌─╴ ╶─┐
─┬─╴ ╶─┬─╴ ╶─ ╶─┼───────────┼─╴ ╶─┼─────┼─
 ├─╴ ╶─┤ └─╴ ╶─┘ ├─╴ ╶─┤
 └─╴ ╶─┘ └─╴ ╶─┘

 .my.rxm~arcsin()
 .my.rxm~arccos(
 .my.rxm~arctan(

 number
 precisi

 16 D
 , ,
 R
 G

4 Attention: Libraries rxm.cls downloaded before 2024-12-23, default to 16 digits and the 360 degree (D) circle. The old
defaults are still shown in the RXM method diagrams above.

20

4.4 External Library RXM

Hyperbolic Functions
 ┌─╴ ╶──────┐
─┬─╴ ╶───┬─╴ ╶─ ╶─┼───────────┼─
 ├─╴ ╶───┤ └─╴ ╶─┘
 ├─╴ ╶───┤
 └─╴ ╶─┘

 .my.rxm~sinh()
 .my.rxm~cosh(
 .my.rxm~tanh(
 .my.rxm~arsinh(

 number
 precisi

 16
 ,

Compared to RXMATH, method arsinh is new.

Calling RXM Functions

RXM is usable with the familiar function call syntax, like RXMATH.
To do that, the name prefix RxCalc... has to be replaced by rxm.... The remainder of the name remains
the same, for example:

in place of RxCalcSin(...) use rxmSin(...)

The number and order of arguments is the same. The functions do an additional syntax check before
calling the corresponding method, which in this example would be .my.rxm~Sin(...).
From the user view, calling RXM methods via its functions has the advantage of additional syntax
checking and error messages, if required. On the other hand, computing intensive programs may be
faster, if the methods are called directly. The run times mentioned on page 19 were obtained using
method calls.

Downloading RXM

The library can be downloaded from rosettacode.org via menu Explore, select Tasks to see an
alphabetic list. Go to Trigonometric Functions to see a list of programming languages. Then scroll to
ooRexx. You can also use the direct link:

rosettacode.org/wiki/Trigonometric_functions#ooRexx

Rosettacode presents an HTML file containing descriptions and code. Use „Cut and Paste“ to save the
parts in individual files as recommended below:

• The first text block, titled rxm.cls, is a help text and can be saved as file rxm.txt.
• It is followed by ooRexx code for demonstration and functional test after download of the library.

Recommended is saving it as file rxmdemo.rex.
• The third block, headed Output is an output listing of running the above demo and test program.

It could be saved as rxmdemo.txt.
• Finally, the last, very large block (1047 lines) marked Package rxm is the library code which

should be saved as rxm.cls.

My recommendation is to copy file rxm.cls to the ooRexx installation directory, to make it accessible
to all users. The ooRexx installation program will leave it alone on future ooRexx updates, just like any
other local programs you may add to the Installation – as long as you avoid duplicate names.

Note on Rosettacode
rosettacode.org/wiki/RxTriangle.rex points to a most recently (February 2025) added li-
brary by Walter Pachl, which can be used for geometrical calculations: distances, crossing points, angles
between lines etc.
rosettacode.org/wiki/Category:OoRexx takes you to a list of ooRexx programs on Rosetta-
code (currently more than 230). Lists are shown only in parts of up to 200 entries. You need to click on
next page near the bottom to scroll. If OoRexx in the link is replaced by string REXX, a list of about 1100
REXX programs will appear.

21

5 Time and Date

The ooRexx calendar covers the range from Monday, 01 January 0001 to Friday, 31 December 9999. All
days are consecutively numbered from 0 to 3652058, which is a format called Basedate. Spans between
dates can be computed easily. The Gregorian calendar is being used, as if it had existed from the start.
Leap seconds, for the first time inserted in 1972 and most recently in 2017, are ignored. In Windows XP,
7, 8.1 and 10 Rexx uses a clock resolution of one millisecond (3 decimal places). Any additional decimal
places are always zero, as can be seen in the following examples.

 ┌─╴ ╶─┐
 ╶─┼───────┼─
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 │ │
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 │ │
 ├─╴ ╶─┤
 └─╴ ╶─┘

 time()

 0001

 1970

-- Format for current time of the computer clock or stopwatch:

 'N' ⇒ 09:46:37

 'L' ⇒ 09:46:37.397000
 'C' ⇒ 9:46 a.m
 'H' ⇒ 9 0...23 full hours since 00:00
 'M' ⇒ 586 0...1439 dto. minutes
 'S' ⇒ 35197 0...86399 dto. seconds

 'F' ⇒ 63692300797000000 microseconds since 1 Jan 00:00
 'O' ⇒ 7200000000 local microsecond delta to UTC
 'T' ⇒ 1556668800 seconds since 1 Jan 00:00

 'E' ⇒ 152.114000 Elapsed: current stopwatch seconds
 'R' ⇒ 152.114000 dto. plus reset of stopwatch to 0.000000

Returns current time in the requested format.

Stopwatch Functionality

On its first call in a program time(E) as well as time(R) always return 0 and at the same instant start
an internal time counter. Any later call to time(E) returns the current value of that counter, which
continues running. Call time(R) does the same, plus resetting the counter to 0 each time.
A conventional subprogram (defined by a label in the same program file as the caller) inherits the
current value of a running time counter. But the counter in the caller continues running independently
of any resets by the subprogram.
To a subprogram which is defined by a ::ROUTINE directive, the callers time counter is invisible.

Convert Time Formats

 ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─┼───────┼─╴ ╶─ ╶─ ╶─┼───────┼─
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 └─╴ ╶─┘ └─╴ ╶─┘

 time() intime

 intime

-- Converting the format of a time instant
-- between 00:00:00.000000 and 23:59:59:999999

 'N' 'N'
 , ,
 'L' 'L'
 'C' 'C'
 'H' 'H'
 'M' 'M'
 'S' 'S'
 'F' 'F'
 'T' 'T'
 output format format of

-- time('N','9:46am',C) ⇒ 09:46:00
-- time('N',63692300797000000,'F') ⇒ 09:46:37

Returns the time format intime converted to the requested format.

22

Date

 ┌─╴ ╶─┐
 ╶─┼───────┼─┬──────────────────────┬─
 │ │ └─╴ ╶──╴ ╶──╴ ╶─ ╶─┘
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 │ │
 │ │
 ├─╴ ╶─┤
 └─╴ ╶─┘

 date()

 0001
 1970

 sepa

-- Return current date (example for 2019-05-01, 00:00)

 'N' ⇒ 1 May 2019

 , , , default separator
 'I' ⇒ 2019-05-01 '-'
 'S' ⇒ 20190501 ''
 'E' ⇒ 01/05/19 '/'
 'O' ⇒ 19/05/01 '/'
 'U' ⇒ 05/01/19 '/'
 'M' ⇒ May
 'W' ⇒ Wednesday
 'D' ⇒ 121 (1...366 days)
 'B' ⇒ 737179 (basedate: days since 1 Jan 0001)

 -- Counters:
 'F' ⇒ 63692265600000000 microseconds since 1 Jan 00:00
 'T' ⇒ 1556668800 seconds since 1 Jan 00:00

-- Example of changing separator string:
-- date('E',,,'.') ⇒ 01.05.19

For calculations using time format Full (Microseconds) or Ticks (seconds) the value of NUMERIC
DIGITS has to be at least to 18 or 12. See page 16.

Convert Date Formats

 ┌─╴ ╶─┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─┼───────┼─╴ ╶─ ╶─ ╶─┼───────┼─╴ ╶─┬────────┬─╴ ╶─┼─────────────┼─
 ├─╴ ╶─┤ ├─╴ ╶─┤ └─╴ ╶─┘ └──╴ ╶───┘
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ ├─╴ ╶─┤
 ├─╴ ╶─┤ └─╴ ╶─┘
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 └─╴ ╶─┘

 date()
 {default}
 indate
 sepa insepa
 indate

 indate

 indate

-- Converting date format for any date from Monday, 0001-01-01 to Friday, 9999-12-31

 'N' 'N'
 , , , ,
 'I' 'I'
 'S' 'S' output separator
 'E' 'E' if \= default
 'O' 'O' for format
 'U' 'U'
 'M' 'B'
 'W' 'F'
 'B' 'T'
 'D' format
 'F'
 'T'
 output format

-- Convertig basedate to calendar date:
-- date('I',737179,'B') ⇒ 2019-05-01
-- date('I',737179,'B','.') ⇒ 2019.05.01 -- changing default separator

-- Obtaining weekday as a digit: 0 = Monday ... 6 = Sunday
-- date('B','2019-05-01','I') // 7 ⇒ 2 means Wednesday

Returns date format indate converted to the requested format. By using argument sepa a separator
character other than the default may be requested. The sepa argument must be exactly 1 character long
and not be a letter or figure. A null string is accepted and will suppress the use of separators.
Providing insepa is only needed if indate does not use the default separator for that format.

For heavy duty work of processing this type of data, object classes DateTime and TimeSpan provide
more than 100 methods.

23

6 Managing Files and Directories

Windows (and Unix) files, from ticker tape times, inherited their non-structure as a continuous stream
of characters.1 Lines have to be marked by the end-of-line character-pair hexa 0D0A (formerly teletype
carriage return and line feed, CRLF) in the data. To find out how many lines a file has, the file system
must scan it completely. This has become faster by orders of magnitude in current Windows and
hardware.
During Line-oriented processing, ooRexx handles the CRLF invisible to the running program. It strips
CRLF from the file lines read and adds them to the lines when writing to a file. If processing is Character
oriented, CR and LF are treated as ordinary data and are visible to the program.

6.1 File Management

Test of Existence, Delete

 ╶─ ╶─

 ╶─ ╶─

 SysIsFile()

 SysFileExists()

 flag filepath

 0 not found
 1 found

 filepath

 flag filepath

 =

-- Older alternative returns 1 also if is a directory:

 =

Returns 1 if the file exist, else 0. The older function SysFileExists() does the same, but also reports
directories. Both do reject place holders like * or ?.

 ╶─ ╶─ SysFileDelete() rc filepath

 0 deleted
 2 not found

 =

Practical for deleting a file, irrespective if it exists or not. Returns the Windows returncode (see page
59), which is 0 if the file was deleted or 2 if not found.

Copy, Move, Rename

 ╶─┬─╴ ╶─┬─╴ ╶─ ╶─ ╶─
 └─╴ ╶─┘
 SysFileCopy()
 SysFileMove(
 rc sourcepath sinkpath = ,

Returns 0 after file was successfully copied or moved, else a Windows returncode. Renaming a file is
done by moving within the same directory.

6.2 Directory Management

If no path is given, files are searched or created in the „current“ directory. This is the directory in which
the command to start the ooRexx program was entered. If it is started by double click on an Icon, the
entry in the „Execute in:“ field of the Icon Properties dialog applies.

1 Conversely, mainframes inherited a record oriented structure from the Hollerith punch card.

24

6.2 Directory Management

 ╶─ ╶─ qualify() charstring

-- If current directory is: 'D:\Sandbox'
-- qualify('abstract.txt') ⇒ 'D:\Sandbox\abstract.txt'
-- qualify('.\rexx\abstract.txt') ⇒ 'D:Sandbox\rexx\abstract.txt'
-- qualify('\rexx\abstract.txt') ⇒ 'D:\rexx\abstract.txt'
-- qualify(' ') ⇒ ''

If charstring is a filename, the function returns the full path to the current directory, to which the
filename is appended. If charstring is an absolute or relative part, it is appended to the drive letter or
the current ditectory. If it is a blank or a null string, a null string is returned.

 ╶─┬─╴ ╶───────┬─
 ├─╴ ╶─────┤
 ├─╴ ╶────┤
 ├─╴ ╶─┤
 └─╴ ╶────┘

 SysIsFileDirectory() flag name
 .\name
 0 not found ..\name
 1 found ..\..\name
 x:\path

 = -- equivalent to .\name
 -- subdirectory of current directory
 -- same level as current directory
 -- level above current directory
 -- complete path

Returns 1 if the directory exists, else 0.

 ╶─┬─╴ ╶─┬─╴ ╶─
 └─╴ ╶─┘
 SysMkDir()
 SysRmDir(
 rc filepath =

Makes or removes the specified directory and returns 0 if successful or else a Windows returncode.

Reading Elements of Path Names

 ╶─┬─╴ ╶─┬─╴ ╶─ ╶─
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 ├─╴ ╶─┤
 └─╴ ╶─┘

 filespec() filepath
 -- Example: D:\Sandkasten\short.txt
 'D' , ⇒ 'D:'
 'L' ⇒ 'D:\Sandkasten\'
 'P' ⇒ '\Sandkasten\'
 'N' ⇒ 'short.txt'
 'E' ⇒ 'txt'

If the requested element does not exist in filepath, the null string is returned.

Short Path Names

Some older programs are not prepared to handle blanks in path names. This can be circumvented by
using the original „8.3“ short format that Windows creates internally.

 ╶─ ╶─

 ╶─ ╶─

 SysGetShortPathName()

 SysGetLongPathName()

 pathlongname

 pathshortname

-- sysgetshortpathname('C:\Program Files (x86)') ⇒ 'C:\PROGRA~2'
-- sysgetshortpathname('C:\doesnt exist') ⇒ ''
-- sysgetshortpathname('C:\Users') ⇒ 'C:\Users'
-- sysgetshortpathname('C:\Benutzer') ⇒ '' Explorer GUI quirk

-- reverse direction:

Note that the Explorer GUI in non-English Windows in part uses „translated“ directory names which
are unknown to Windows, like German Benutzer for the Users directory.

Hint

Windows command ATTRIB has the purpose to list or change file attributes. But when searching for
a –possibly known only in part– file name, it is a very useful and on current systems fast tool. For
example:

 ATTRIB *1916.pdf /S

25

6 Managing Files and Directories

Searches the current directory and its subdirectories (/S) for all PDF files with a name ending in „1916“.
The full pathnames of all hits are written to the screen.
On page 36 it is described how an ooRexx program can process the lines written to the screen. Since
Solid State Disks (SSD) are replacing mechanical disks, ATTRIB has become markedly faster.

6.3 Searching for Directory- and Filenames

 ┌─╴ ╶──┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┬─╴ ╶─┬─╴ ╶─┼───────┼─╴ ╶─┼───────────┼─╴ ╶─┼───────────┼─
 └─╴ ╶──┘ └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘

 ┌─╴ ╶──────────────────────────────┐
─┼─────┬─┬──────────┬─┬─────┬─┬─────┼─
 ├─╴ ╶─┤ ├───╴ ╶────┤ └─╴ ╶─┘ └─╴ ╶─┘
 ├─╴ ╶─┤ ├───╴ ╶────┤
 └─╴ ╶─┘ └───╴ ╶────┘

 SysFileTree() rc searchpath list.
 list opt hasattr setattr

 'B' '*****' '*****'
 = , , , ,

Options (specify without spaces):
 B -- search for: F files, D directories, B both
 -- time format: none ⇒ mm/tt/jj hh:mmx (x = a|p)
 F T S H -- T ⇒ jj/mm/tt/hh/mm
 D L -- L ⇒ jjjj-mm-tt hh:mm:ss
 B O -- O only file path in result
 -- option S: include subdirectories
 -- option H: size field 20 bytes instead of 10

searchpath defines the top directory to be searched and the file names. If no directory is given, the
current directory is searched. The usual Windows masks can be used, for example *.exe
The search can be limited to files with certain attributes (Archive, Directory, Hidden, Read-Only, System,
in short ADHRS). This is defined by using a string hasattr of exactly 5 bytes. Three characters are used
to indicate the required attribute setting: * for any , + for set, and - for not set (deleted).
The name list. defines the destination of the result lines. If it ends –as in this example– in a period, the
result will be written to a stem variable2. It need not to exist previously. If it does, the existing one will
be replaced by the result. Element list.0 holds the number of the hits found. If this number is larger
than 0, elements list.1 ... will hold the result in the format shown below.
If the destination name does not end in a period (list) and an array named list exists, the result will be
written to the array. The elements list[1]... will hold the result. If this array does not exist, the output
will be written to stem variable (list.), which is the behaviour of ooRexx versions earlier than 5.0, when
output could only be written to a stem variable.
The option characters have to be supplied without spaces, for example ’FLS’.

 │ │ │

 + + + + + + + +
 │ │ │

 │ │ │

 │ │ │

 + + + + + + + +

 time

 10/05/19 11:17p 509440 A---- C:\program files (x86)\oorexx\ooDialog.exe

 T
 19/10/05/23/17 509440 A---- C:\program files (x86)\oorexx\ooDialog.exe

 L
 2019-10-05 23:17:48 509440 A---- C:\program files (x86)\oorexx\ooDialog.exe
 2015-05-09 16:25:06 0 -D--- C:\program files (x86)\THE\doc

 O
 C:\program files (x86)\oorexx\ooDialog.exe

 Directory!

 Effect of the option (none T L O) on the result layout:

1....2....3....4....5....6....7....8
 none 19 31 38

 17 29 36

 22 34 41

 --
1....2....3....4....5....6....7....8

If option H is used, the pathnames are moved to the right by 10 positions due to the increased length of
the size field.
A 5 bytes long string setattr allows to change attributes by providing one of the following characters:
* to leave unchanged, + to set, and - to reset. The result returned by sysfiletree already shows the
changed attributes.

2 Stem variables are described on page 35; Arrays on page 40.

26

7 Read and Write Files (New)

Reading the 3 million lines of a 120 megabytes file on an ordinary Lenovo E595 notebook with mechani-
cal disk using the ~arrayin method just takes 7.4 seconds. Using the code proposed by Jon Wolfers (see
below) its only 1.1 seconds.
In our time of large computer memory, files may conveniently read in one single operation into RAM,
to be processed in place. This is much faster than the conventional line by line reading from and writing
to disk.

• Object type array is used for holding the data. How to work with arrays is described starting on
page 40.

• An additional requirements is the explicit definition of a stream object, acting as a data channel
connecting the program and the file.

The conventional way of working with files is described starting on page 30.

7.1 Copy Data from File to Array

Step 1: Define Stream to Access File

 ╶─┬─╴ ╶────┬─
 ├─╴ ╶────┤
 └─╴ ╶─┘

 .stream~new() mystream filepath
 file.ext
 x:\filepath

 =

Defines a stream mystream through which the file is accessed. The existence of the file or the storage
medium is not tested at this point.

Step 2: Open File

 ┌─╴ ╶─┐
─┬─╴ ╶──┬─╴ ╶─ ╶─┼────────────────┼──
 ├─╴ ╶─┤ └───╴ ╶──┘
 └──╴ ╶────┘

 ~open() mystream
 arguments
 other

 'READ WRITE'
 'READY:' =
 'ERROR:n'

-- mystream~open ⇒ read and write
-- mystream~open('read') ⇒ only read
-- mystream~open('write replace') ⇒ replaces existing file

If string READY: is returned, the file can be used. In case of an error, a string like for example
ERROR:2 is returned. The code –2 in this example– is a Windows returncode, as described on page 59.
Other returned strings like NOTREADY or UNKNOWN are documented but could not be produced
during testing for this document.

Step 3: Copy File Data to Array

In a single instruction, the entire file contents is copied to an array object. This places the data in RAM,
where it can be processed very fast.

 ┌─╴ ╶─┐
 ╶─ ╶─┼───────────┼─
 └─╴ ╶─┘

 ╶─ ╶─ ╶─

 ~arrayin()

 ~charin(1, ~chars)~makearray

 datarray mystream

 datarray mystream mystream

 'LINES'
 =
 'CHARS'

Fastest known alternative by Jon Wolfers:

 =

27

7 Read and Write Files (New)

If array datarray does not exist, it is automatically created by method ~arrayin. Should the array already
exist, the old data is deleted. In LINES mode, each array item holds one line of the file, the CRLF
already being stripped from it.
The shown alternative proposed by Jon Wolfers needs only 1.1 seconds for a test file, while the standard
way requires 7.4 seconds.

Step 4: Close Stream

 ╶─ ~close mystream

It is good programming style to close a no longer needed file. Otherwise it remains open and the stream
blocks resources, particularly if many files are being processed.

If Needed: Informations About a File; Positioning

 ╶─

 ╶─

 ╶─

 ~lines

 ~lines('N')

 ~chars

 num mystream

 flag mystream

 num mystream

 = ⇒ count of lines still to be read

 = ⇒ 1: lines to be read exist, else 0

 = ⇒ count of bytes still to be read

These method calls are self explaining.

 ╶─┬─╴ ╶─────┬─╴ ╶─
 └─╴ ╶─┘

 ┌─╴ ╶─┐
 ╶──┼─────┼─╴ ╶──
 ├─╴ ╶─┤
 ├─╴+╶─┤ +
 └─╴ ╶─┘

 ╶──┬─────────┬──
 ├─╴ ╶──┤
 └─╴ ╶─┘

 ┌─╴ ╶─┐
 ╶──┼─────┼──
 └─╴ ╶─┘

 ~seek()
 ~position(

 =1 <0
 = =0 =1

 <

 -

 newpos mystream 'string'

 'string'

 num

 num

 num

 =

-- has 1 to 3 elements: -- include string in single or double quotes

 -- is start of file; is end of file (EOF)
 = -- from beginning; is treated as
 1.
 < -- from EOF backwards
 -- from current position forward (towards EOF)
 - -- from current position backwards

 2. (optional) -- use only when different positions for
 READ -- writing and reading are necesary
 WRITE

 C -- CHAR: bytes (maybe unexpected default!)
 3. (optional)
 L -- LINE: lines

-- resulting position:
-- mystream~seek('64') ⇒ byte 64
-- mystream~seek('=8 L') ⇒ line 8
-- mystream~seek('< 0 L') ⇒ beginning of last line

If reading is not to start from position 1, method ~seek provides the required starting position.
The chapter on arrays starting on page 40 describes in detail how to work with the data in an array.

28

7.2 Copy Data from Array to File

7.2 Copy Data from Array to File

In mode LINES, each array element will be written as a line (with CRLF appended to it) to the file.
Because the sequence of four steps is the same as with reading, combining all steps into one display
box will suffice:

 ╶─ ╶─

 ╶─

 ╶─ ╶─ ╶─

 ╶─

 .stream~new()

 ~open('write replace')

 ~arrayout()

 ~close

 mystream outfileid

 mystream

 mystream datarray

 mystream

 = -- 1. Define stream to acces file

 -- 2. Open file for writing and replacing

 -- 3. Copy data to array (creating new or replacing)

 -- 4. Cleanup after use

-- Faster alternative to step 3:

mystream~charout(datarray~tostring,1) -- 3a. Proposed by Jon Wolfers
mystream~charout('0D0A'x) -- 3b. add missing CRLF of last line

In step 3 all array elements are copied in a single operation from RAM to disk. As an alternative the
steps 3a and 3b may replace step 3.
On closing the file in step 4, method ~close returns string READY:. Should an error occur, a Windows
return code is returned, see page 59.
To save a 77 megabytes file of 3 million lines, 9.4 seconds were needed by method ~arrayout, while step
3a, as proposed by Jon Wolfers, needs 2.4 seconds. The file created by step 3a is 2 bytes smaller, because
the last line is missing the CRLF pair. This is resolved by step 3b.

29

8 Read and Write Files (Conventional)

Countless existing Rexx programs make use of the conventional functions. They are simpler to code,
because no stream needs to be created. And no explicit open call is required, because it happens
automatically on the first access. On the other hand, the conventional functions are noticeably slower
when processing large files.
Each call reads/writes exactly one line or one „block“ of data. One block consists of one or more bytes.1

Files which are accessed via the new stream approach can also be processed in conventional line and
character modes. The method calls for this are also described below.

Get Line Count

 ╶─ ╶─ ╶─┬───────┬─
 └─╴ ╶─┘

 ╶─
 ╶─

 lines()

 ~lines('N')
 ~lines

 n fileid

 flag mystream
 n mystream

 = , -- 1 if a line is available, else 0
 'C' -- counts the available lines

method for stream:

 = -- 1 or 0 as above
 = -- counts the available lines

Returns 1, if data can be read from fileid, else 0. Using argument C returns the number of available lines.

Reading File Lines

 ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼──────────┼─╴ ╶─┼─────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─┼──────────┼─╴ ╶─┼─────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 linein()

 ~linein()

 {next}
 string fileid
 lineno

 {next}
 string mystream
 lineno

 1
 = , ,
 0

method for stream:
 1
 = ,
 0

Returns the next line from fileid, by default starting with line 1. Only a single line per call is possible.
Conceptually, all lines in a disk file are consecutively numbered starting with 1. If argument lineno is
used, the line with this number is returned. If used, lineno may be smaller than the current line number.
If a lineno is combined with last argument, no data is returned but only the reading position changed.
On the next call, the data of line lineno is returned.

 do i=1 for lines(fileid,'C')

-- Example of a loop for reading a file completely

fileid = 'C:\\demo\\sample.txt'
do i=1 while lines(fileid) = 1 -- now recommended:
 ...
 dataline = linein(fileid)
 ...
end i

Calling linein() after the last line of a file has been read, causes an endless wait. To avoid this, the use
of lines() is important.

1 Rexx on the mainframe also uses a command named EXECIO, which is available in simplified form. It is described in chapter
HOSTEMU of manual rexxextensions.pdf.

30

8.1 Read or Write in Character- or Block Mode

Writing File Lines

 ┌─╴ ╶─┐
 ╶─┬─╴ ╶─ ╶─ ╶─ ╶─┼────────────┼─┬─
 │ └─╴ ╶───┘ │
 └─╴ ╶─────────────────────────────────┘

 ┌─╴ ╶─┐
 ╶─ ╶─┬─╴ ╶─ ╶─┼────────────┼─┬─
 │ └─╴ ╶───┘ │
 └─────────────────────────────┘

 lineout()

 ~lineout()

 {append}
 rc fileid string
 lineno
 fileid fileid

 {append}
 flag mystream string
 lineno

 = , ,

 -- closes file

method for stream:

 = ,

 -- closes the stream

Appends string as a new line to file fileid and returns 0, in case of error 1. If lineno is used, lineout()
writes the data beginning at the start of line lineno. Existing data is overwritten regardless whether old
and new length are identical. Line number lineno must exist in the file or be the new line at the end of
the file.

8.1 Read or Write in Character- or Block Mode

In this mode, the line-end pair CRLF (hexa 0D0A) is not a control sequence but data. It is treated like all
other bytes in the file. A block may consist of only 1 byte. A logical line structure is possible, if all lines
are blocks of exactly the same length. If, for example, a table has lines (rows) of 244 bytes, all writes or
reads must be in portions of 244 bytes or a whole multiple of it.

Get Byte Count

 ╶─ ╶─

 ╶─

 chars()

 ~chars

 num fileid

 num mystream

 =

 = -- stream method

Returns the number of available –not yet read– characters in fileid or 0.

Read Bytes

 ┌──╴ ╶──┐ ┌───╴ ╶───┐
 ╶─ ╶─ ╶─┼────────────┼─╴ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 ┌──╴ ╶──┐ ┌───╴ ╶───┐
 ╶─ ╶──┼────────────┼─╴ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘

 charin()

 ~charin()

 {next}
 string fileid
 startpos count

 {next}
 string mystream
 startpos count

 1
 = , ,

 > 0 >= 0
stream method:
 1
 = ,

 > 0 >= 0

Returns a string of count characters from fileid. If fewer bytes are available, the string is shorter. By
using startpos, the reading position may be changed. If combined with last argument 0, only the reading
position is changed and a null string returned.

31

8 Read and Write Files (Conventional)

Write Bytes

 ┌─╴ ╶─┐
 ╶─┬─╴ ╶─ ╶─ ╶─ ╶─┼────────────┼─┬─
 │ └─╴ ╶─┘ │
 │ │
 └─╴ ╶─────────────────────────────────┘

 ┌─╴ ╶─┐
 ╶─ ╶─┬─╴ ╶─ ╶─┼────────────┼─┬─
 │ └─╴ ╶─┘ │
 │ │
 └─────────────────────────────┘

 charout()

 ~charout()

 {append}
 rc fileid string
 startpos

 fileid

 {append}
 flag mystream string
 startpos

 = , ,

 -- closes the file

Stream method:

 = ,

 -- closes the stream

Appends string to the end of fileid or overwrites existing data beginning at startpos.

Close File

At the end of the program, all files it opened are automatically closed. Good programming practice is
closing each file as soon as it is no longer needed.

 ╶─ ╶─ ╶─ ╶─ ╶─ ╶─ stream() string fileid = , 'C' , 'CLOSE'

Returns the string READY: or the null string if fileid was not open. In case of error, string is the
Windows returncode; see page 59. Files which are open for writing can also be closed via lineout() and
charout() as mentioned above.

32

9 Bits and Bytes

The smallest storage unit is the byte, holding one character and made up by 8 bits. Eight bits of 0 or
1 can have 256 different combinations. Three ways to display a byte are supported by ooRexx, as is
illustrated using the letter Z:

• The character (c) type of display uses the graphical representation (glyph) which we see on the
keyboard or on the screen: Z. Only a part of the 256 possible values are assigned glyphs that can
be directly entered on the keyboard or displayed on the screen.

• In binary (b) representation, the 8 bits of character Z are written in ooRexx as ’01011010’b.1

The 256 bytes in binary notation span the values:

’00000000’b ... ’11111111’b

• The hexadecimal (x) representation of character Z is ’5A’x. It is much easier to understand by a
human than a string of bits. The byte is made up of two groups of 4 bits each. Each group has 16
possible values. The first 10 are represented by digits 0 through 9. Higher values are represented
by using A through F acting as „figure“. A represents 10 and so on. The 256 bytes in hexadecimal
notation span the values:

’00’x ... ’FF’x

A fourth type of representation, which unlike the above cannot be directly written as an ooRexx
expression, is decimal (d) numbers. It is simply the consecutive numbering of the 256 characters from 0
to 255. Letter Z has the decimal value 90. To use this representation, which for example is necessary
when handling storage addresses, a conversion step is required.
Binary ’11010110’b, hexadecimal ’D6’x and decimal (214) are representations of the same Byte.
For the character representation this is only partly true. Letters and symbols which are not part of
the English language were over time and in different countries assigned to different bytes. Industry
created „codepages“ in an attempt to define standard assignemts of glyphs (like ö) to a byte value. From
country to country, different codepages are in use.2 Outside of byte range ’20’x ... ’7E’x (blank,
digits, letters, punctuation) one has to carefully check what glyph is displayed if different computers or
program versions come into play.
When coding binary or hexadecimal strings, ooRexx ignores blanks, which may be used for improved
readability. If necessary, ooRexx pads a string with zeros to the length of the next full byte. The
following table illustrates the available conversion functions (read „2“ as „to“):

 ┌──────────────────┬─────────┬─────────┬─────────┬─────────┐
 │ │ │ │ │ │
 ├──────────────────┼─────────┼─────────┼─────────┼─────────┤
 │ │ │ ╶─ │ ╶─ │ │
 ├──────────────────┼─────────┼─────────┼─────────┼─────────┤
 │ │ ╶─ │ │ │ │
 ├──────────────────┼─────────┼─────────┼─────────┼─────────┤
 │ │ ╶─ │ │ │ │
 ├──────────────────┼─────────┼─────────┼─────────┼─────────┤
 │ │ │ │ │ │
 └──────────────────┴─────────┴─────────┴─────────┴─────────┘

 from to: Bits Char Decimal heX

 Bits b2x

 Char (glyph) c2d c2x

 Decimal d2c d2x

 heXadecimal x2b x2c x2d

Conversion from and to binary is only available via the hexadecimal representation. Binary and
hexadecimal functions expect the quoted argument strings without an appended b or x.

1 Experience has shown that b and x should not be used as variable names. When one of these is appended to a quoted
string, the interpreter wrongly assumes a binary or hexadecimal string.

2 In German Windows 10, the console uses codepages 850, while Notepad uses 1252. The Hessling Editor (THE) version 4.0
changed its default from 850 to 1252. Hex D6 is shown as glyph Í in 850 and as Ö in 1252.

33

9 Bits and Bytes

Conversion Examples

c2x('Z') ⇒ 5A
x2c('5A') ⇒ Z
x2b('5A') ⇒ 01011010
b2x('0101 1010') ⇒ 5A

Positive Whole Numbers

c2d('Z') ⇒ 90
x2d('FFFF') ⇒ 65535
d2x(123456) ⇒ 1E240 -- note not 01E240 (no leading 0)

Negative Whole Numbers

x2d('FFFF',4) ⇒ -1 -- 4 halfbytes = FFFF
x2d('FFFF',8) ⇒ 65535 -- padded to 8 halfbytes = 0000FFFF
x2d('00FF',2) ⇒ -1 -- length from the right hand end: hex FF
x2d('FFFF',0) ⇒ 0
d2x(-1,2) ⇒ FF
d2x(-1,8) ⇒ FFFFFFFF

Negative numbers always require a length argument. The first bit is a sign bit.

Bitwise Logical Operations

──┬─╴ ╶─┬─╴ ╶─ ╶─ ╶─ ╶─┬───────────┬─
 ├─╴ ╶──┤ └─╴ ╶─┘
 └─╴ ╶─┘

 ╶────────────

 bitand()
 bitor(
 bitxor(

 string1 string2
 padbyte
 , ,

Examples:
 e = '65'x = '0110 0101'b
 Y = '59'x = '0101 1001'b

 bitand('e','Y') ⇒ '0100 0001'b = '41'x = A
 bitor('e','Y') ⇒ '0111 1101'b = '7D'x = }
 bitxor('e','Y') ⇒ '0011 1100'b = '3C'x = <

These functions return the string that results from applying the logical AND, OR or XOR bit by bit to
string1 and string2. If padbyte is supplied, the shorter bitstring is padded with it. Otherwise, the logical
comparison stops at that point and the remaining bits of the longer string are copied to the output.

34

10 Multitool: Stem Variable

The most simple data collection, called stem variable, already existed in REXX on the mainframe.
Countless existing programs make use of it. Its multidimensional variant is often called compound
variable.
The name of a stem variable has at least two parts (stem and index), divided by a period:

 stem.branch
 stem.branch.twig
 stem.branch.twig.leaf
 and so on ...

A short list of some towns that were members of the medieval Hanseatic League will serve as an example.
The stem of this variable is hanse. and whole numbers are used as index:

hanse.1 = 'Bremen'
hanse.2 = 'Hamburg'
hanse.3 = 'Lübeck'
hanse.4 = 'Wismar'
hanse.5 = 'Rostock'
hanse.6 = 'Stralsund'
hanse.7 = 'Greifswald'

This kind of stem variable with numerical index is by far the most used, because it serves as a vehicle to
exchange data between an ooRexx program and subprograms it calls. Its importance and usefulness in
this role has increased a lot, when keyword use arg was introduced in Rexx 3.0 (see page 47). This made
it possible for two programs to share a big data collection without large internal copying operations.

 +

i = 4
say hanse.[i-1] ⇒ Lübeck
say hanse.i ⇒ Wismar
say hanse.[i 3] ⇒ Greifswald

Enclosing the index expression in brackets [] simplifies accessing neighbouring elements, as is often
required in loops. It also makes possible to have the index value in another stem variable, which
otherwise would not work.

index.999 = 5
say hanse.[index.999] ⇒ Rostock

10.1 Enumerated Stem Variable

This is the conventional way for a called program to return its data to the calling program. Enumerated
adds the following rules to the numerical index:

• The first element has number 1.
• The following elements are consecutively numbered by adding 1.
• Element 0 contains the number of the last existing element. In our Hanseatic League example it is:
hanse.0 = 7.

In this Short Reference, a stem variable that has these properties is called enumerated stem variable.
Internally, ooRexx does not depend on the above properties, as we will see later. The enumerated stem
variable is purely a convention obeyed by the classic interface. Examples are functions like SysFileTree
(see page 26) and the four functions described below.

35

10 Multitool: Stem Variable

Utility Functions for Enumerated Stem Variables

In all these function calls, the stem. argument may be written without the period. Element stem.0 is set
by these functions as required.

 ┌─╴ ╶─────┐
 ╶──╴ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘
 SysStemDelete() rc stem. pos
 count

 1
 = , ,

Deletes exactly count elements from stem. starting with element pos. The elements coming after the
deleted ones fill the gap. If element 3 is deleted, former element 4 will be assigned index 3 and counter
stem.0 is reduced by 1.

 ╶──╴ ╶─ ╶─ ╶─ ╶─ ╶─ SysStemInsert() rc stem. pos string = , ,

Adds string as a new element with index pos. An existing element at pos and all following get their
index increased by 1. To append string as a new element, pos must be set to stem.0 plus 1.

 ┌──╴ ╶──┐ ┌──╴ ╶──┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼───────┼─╴ ╶─┼───────┼─╴ ╶─┼──────────────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └───╴ ╶────┘ └─╴ ╶─┘
 SysStemCopy()
 {source.0}
 rc source. sink.
 pso psi count

 1 1 'O'
 = , , , , ,
 'I'

Starting at position pso, copies exactly count elements from source. to sink.. Default for count is all
elements of source. Existing elements in sink., starting at position psi are overwritten.1 If the sixth
argument is I, the copied elements are inserted starting at position psi and the old elements are assigned
higher index numbers accordingly. To append the elements to sink., position psi must be set to sink.0
plus 1.
If stem variable sink. does not exist, it will be a complete copy of source., provided no other arguments
are used.
Special case, if sink. exists and Insert-mode is used and no other arguments are used: The elements
copied from source. will precede(!) the old elements of sink..

 ┌─╴ ╶─┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐ ┌─╴ ╶───┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼───────┼─╴ ╶─┼───────┼─╴ ╶─┼─────┼─╴ ╶─┼────────────┼─╴ ╶─┼───────┼─╴ ╶─┼─────────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ └─╴ ╶─┘ └────╴ ╶─────┘ └─╴ ╶──┘ └─╴ ╶────┘
 SysStemSort()
 {stem.0} {end}
 rc stem.
 n z le ri

 'A' 'C' 1 1
 = , , , , , ,
 'D' 'I'

Sorts the elements in stem. based on the characters which each element contains at the columns le
trough ri. Default for ri is the end of the element. By default, sort is in ascending (A) order, observing
upper- and lowercase (C) of letters. Argument D creates a descending sort order. Argument I ignores
the case of letters. The sorting may be limited to elements n through z. Default is sorting all elements.
The sorting algorithm used is „not stable“. Elements with identical will not keep the original sequence
they had before the sort. See page 43 for an alternative.

Reroute Screen Output to a Stem Variable

Sometimes it would be very useful to be able to somehow „catch“ the screen output of external
programs –like pdftk.exe in the following example– to be able to process it. Beyond Windows
Pipelining not much can be done, because compiled programs cannot be changed.
Since ooRexx 5.0, screen output that an external program produces using STDOUT and STDERR can
be re-routed to an enumerated stem variable. The calling ooRexx program uses extension WITH of
keyword ADDRESS for this. The screen output is then available to it as an enumerated stem variable.
This works for EXE-, BAT- and CMD-programs as well as existing Rexx programs.

1 Contrary to what the Reference says, the default is Overlay, not Insert according to my test.

36

10.2 General Stem Variable

 ┌─╶───┐
 │ ┌─╴ ╶─┐ │
 ╶─ ╶─ ╶─ ╶─┴─┬─╴ ╶─┬─┼───────────┼─╴ ╶─ ╶─┴─
 └─╴ ╶──┘ └─╴ ╶──┘

 REPLACE
 address 'CMD' WITH OUTPUT STEM
 ERROR APPEND

 address 'CMD' WITH output stem

 'progcall' stemname.

 <

-- Example: Reroute of screen output from PDFTK.EXE to stem variable HELPINFO.
 'pdftk.exe --help' helpinfo. -- sets helpinfo.0 = 428

CMD is in quotes here because of the ADDRESS syntax. It passes progcall on to Windows, which starts
the external program in question. It is strongly recommended to put progcall also in quotes to avoid
interference between external command syntax and the ooRexx interpreter. If it contains blanks, progcall
must be in quotes.
Keyword WITH is followed by one or two instruction blocks. If used, keyword OUTPUT with STEM
controls re-routing STDOUT to stem variable stemname.. Keyword ERROR with STEM, if used, does
the same for STDERR. If both are used, each must be given its own stem variable name.
After control returns from the called program, element 0 of each stem variable holds the number of
re-routed lines. A previously existing stem variable is replaced.
If option APPEND is used, element stemname.0 must exist and contain a number count. The new lines
are then written starting with element stemname.[count+1] and so on.
The extension WITH of keyword ADDRESS offers more, rather complex processing. For example,
data can be supplied to STDIN. I did not see any functionality which I had been missing. Therefore I
did not test further and cannot describe the other processing modes.

Handling Blanks in Path Names
Some older programs cannot handle blanks in path names correctly. Windows internally creates for
each directory and file a short name in the legacy 8.3 format. See page 25 for a function to get this short
name.

10.2 General Stem Variable

As already mentioned, ooRexx itself is not dependent on enumerated stem variables. It neither needs
starting with 1 nor are gaps in the indexing a problem. Our example of Hanseatic League towns could
also be implemented with German telephone area codes:

hanse.0421 = 'Bremen'
hanse.040 = 'Hamburg'
hanse.0451 = 'Lübeck'
hanse.03841 = 'Wismar'
hanse.0381 = 'Rostock'
hanse.03831 = 'Stralsund'
hanse.03834 = 'Greifswald'

It is important to note that stem indexes are in fact character strings, not numbers to ooRexx. Index 040
is not the same as 40.

wanted = 03831
say 'Hansestadt' hanse.wanted ⇒ Hansestadt Stralsund

If ooRexx encounters a stem variable –in this case hanse.wanted – the index is checked for being a
variable having a value. Here, this is actually true: wanted is a variable having value 03831.
Next, ooRexx checks if the resulting stem variable hanse.03831 is assigned a value. This again is
true; the value is Stralsund. The interpreter replaces the stem variable in the code line with this
value, resuling in the screen output shown above.
If an undefined area code is used, the following happens:

wanted = 0815
say 'Hansestadt' hanse.wanted ⇒ Hansestadt HANSE.0815

The resulting stem variable is hanse.0815 in this case. It has no assigned value and is treated like
any unknown variable (see page 55) as „itself“ folded to uppercase: HANSE.0815.

37

10 Multitool: Stem Variable

Initialize

To avoid an output like HANSE.0815 it is possible before the first element of a stem variable is
assigned, to define a default value. This will be used when a non-existing index of the stem is
referenced. For stem hanse. this could for example be:

hanse. = 'unknown area code'

As a result, unknown area code is used as value of undefined hanse.0815. The null string may also be
used. Warning: If a non-empty stem is initialized, all existing data in the stem is deleted.

Character String Indexing

Because the index is a string, it may use not only digits, but in principle all characters that have no
special function in ooRexx. Experience has shown that the use of special characters may result in
reduced readability and may have unexpected side effects when editing the file. In the following
example, we use letter groups from German motor vehicle license plates. The codes for the Hanseatic
League towns are:

hanse. = 'unknown'
hanse.HB = 'Bremen'
hanse.HH = 'Hamburg'
hanse.HL = 'Lübeck'
hanse.HWI = 'Wismar'
hanse.HRO = 'Rostock'
hanse.HST = 'Stralsund'
hanse.HGW = 'Greifswald'

Warning: The above assignments are only coded that way to show the principle. See the paragraph
after the next to learn the reason.

wanted = 'HST'
say 'License from' hanse.wanted ⇒ License from Stralsund

wanted = 'EMM'
say 'License from' hanse.wanted ⇒ License from unknown

Apart from using letters, the principle is the same as with the area codes.

 etc.

licen = 'HB'
hanse.licen = 'Bremen'
licen = 'HH'
hanse.licen = 'Hamburg'

By putting the short letter groups in quotes, the intended result is produced. Doing the coding as
shown first, will result in unwanted effects if one of the index names HB ... HGW already exists as
a variable. In particular, later changes in the program are prone to overlook such things and cause
unexpected behaviour.
In my experience, this safe coding by using quoted strings is not an obstacle in practice, because the
relevant data is mostly read from files, not coded manually.

38

10.3 Multidimensional Stem Variable

10.3 Multidimensional Stem Variable

 ╶─

-- NL for Nederlanden (Provincien)
country = 'NL'
prov = 'GE'
land.country.prov = 'Gelderland'
prov = 'GR'
land.country.prov = 'Groningen'

-- DE for Deutschland (Bundesländer)
country = 'DE'
bland = 'MV'
land.country.bland = 'Mecklenburg Vorpommern'
bland = 'NI'
land.country.bland = 'Niedersachsen'
bland = 'SN'
land.country.bland = 'Sachsen'

-- FR for France (Departements)
country = 'FR'
dept = 72
land.country.dept = 'Sarthe'
dept = 62
land.country.dept = 'Pas-de-Calais'

-- Application example:
ix = 'FR'
iy = 72
say country.ix.iy ⇒ Sarthe

This example shows the principle of how to use a stem variable with two dimensions (also called
compound variable). The first index (branch of the stem) is a country code. The second index (twig of the
branch) is a code for the administrative subdivisions of each country.
The example also shows that numerical and general indexes can be used at the same time. A numerical
index need not be quoted, because anything starting with a digit cannot be a variable.
For multidimensional stem (compound) variables, default initializing by using an assignment of the
type land.= xyz is not possible.

39

11 Multitool: Array

Since ooRexx 5.0 there are 13 data collection classes defined. Of these, .array stands out because of its
role in significantly faster reading and writing of files. This was the main reason for me to include it in
this Classic Short Reference. Another quite useful feature are the methods for direct handling of used
and unused index locations.
Also, the performance is improved. I converted a program processing 3 million lines, each holding an
X,Y coordinate pair, from using stems to arrays. This reduced run time (excluding disk access) from
55.5 to 38.5 seconds or by 30 percent.

Common and Different Properties of Stem Variable and Array

Common to both collections is the structure of an index to access items, which contain data. A stem
variable uses character strings as index. Although practical use of enumerated stem variables is
dominant, the indexes are really strings. 40 and 040 define different index locations. At the same time,
using strings as index (license plate codes, for example) offers possibilities that arrays cannot offer.
An array only uses the positive whole numbers 1, 2, ... as index. 40 and 040 do refer to the same
index location. Index location 0 does not exist. An array keeps internal counters for used and unused
locations, which are accessible through method calls.
If a multi-dimensional array is created by defining the maximum size of each dimension, all its elements
can be initialized by a single method call. This is something a multi-dimensional stem variable does
not allow.

 +

 +

 var
 without

 hanse = .array~new
 without

 value with

-- Stem variable:
 mystem.6 = 'Stralsund' -- usual notation
 mystem.[7] = 'Greifswald' -- alternative notation
 say mystem.[i 2] ⇒ Greifswald -- assuming: i = 5
 mystem.['HRO'] = 'Rostock' -- index is not limited to digits
 mystem.4.6.2 -- using a 3-dimensional stem variable
 parse mystem.i ... -- use parse syntax for variables
 mystem~isA(.stem) ⇒ 1 (else 0) -- name here period

-- Array:
 -- array must be defined before use
 hanse[7] = 'Greifswald' -- notation is period
 say hanse[i 2] ⇒ Greifswald -- assuming: i = 5
 say hanse[0007] ⇒ Greifswald -- 0007 = 7 numerically
 hanse[4,6,2] -- using a 3-dimensional array
 parse hanse[i] ... -- different parse syntax required
 hanse~isA(.array) ⇒ 1 (else 0)

Overview diagram of –in part subtle– notation differences. Method ~isA tests the collection type.
To keep the description easy to understand, emphasis in this chapter is on a one-dimensional array of
character strings.

Create an Array and Fill with Data

 ┌────╴ ╶─────┐
 ╶─┼────────────┼─
 └─╴ ╶─┘
 .array~new() arrayname
 topindex

 0
 =

-- newarray = .array~new ⇒ empty array (has no index locations)
-- newarray = .array~new(100) ⇒ index locations 1 trough 100 created, all unused
-- newarray[7] = 'Greifswald' ⇒ creates item 'Greifswald' at index location 7

This method defines array arrayname with zero index locations. Which is called an empty array.

40

In the second example, the defined single dimension array has 100 index locations predefined, but
without associated items yet. Index locations exist, but are „unused“. The created location count is
not fixed. Index locations beyond 100 may be added at any time. On the other hand, the number of
dimensions cannot be changed.
The third statement assigns to index location 7 an item containing the character string „Greifswald“.
Index location 7 now is „used“.
When an item for index location 7 is created in an otherwise empty array, the lower index locations 1
through 6 are automatically created. Array size is 7. Index locations 1 through 6 are „unused“.

 ┌─╶──╴ ╶───┐
 ╶─┴─╴ ╶─┴─ .array~of() arrayname string
 < ,
 =

-- newarray = .array~of('Bremen' , 'Hamburg' , 'Lübeck', 'Wismar', 'Rostock')
-- newarray = .array~of('Bremen' , , 'Lübeck', 'Wismar', 'Rostock')

Creates an array and immediately uses the index locations for items. In the first example, 5 arguments
exist, which results in index positions 1 through 5 being created and used, holding the strings of
arguments 1 through 5.
In the second example, argument 2 is empty (nothing between the commas). Consequently, index
location 2 remains unused.

─╴ ╶─ ╶─ ╶─ ╶─ ╶─ ~append() ix arrayname string =

This method operates independent of the size of the array. The location of the last used index is
determined and string becomes the item of the next location. The new index location is returned; which
will be 1 if the array was empty or all index locations were unused.

─┬─────────────────┬─╴ ╶─ ╶─ ╶─
 └─╴ ╶─ ╶─┘
 ~fill()

 0

 arrayname string
 arraycopy

 =

myarray = .array~new(100,100,100) -- creates an 3D-Array of 100 index locations per dimension
myarray~fill(0) -- assigns an item to each existing index location
say myarray[95,13,67] ⇒ 0 -- shows the item at randomly chosen index location 95,13,67

All existing index locations in arrayname –no matter if they are used or not– receive string as new item
value. A copy of the resulting array can be obtained as return value.

 ┌─╴ ╶──┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────────┼─
 ├──╴ ╶──┤
 └───╴ ╶────┘

 ~insert()

 .nil

 {append}
 nix arrayname string
 afterix

 = ,

Inserts string as a new item after index location afterix. The resulting index location nix is returned. To
insert in front of index location 1, enter .nil (see next section) in place of afterix. If no insert location is
given, this method works exactly like ~append.

Filling an array with data from a file is done by method ~arrayin of the .stream class. This was already
described on page 27.

Information about an Array

The legacy way to report condition „No data exists“ in ooRexx is the null string. Since ooRexx 3.0, the
special object .nil may report this condition. In the program code, its name .nil may written directly.
An example was shown in the description of method ~insert above. It is possible to assign value .nil
to a variable.
In places where ooRexx normally writes character strings (screen output, writing files etc.), this object
is replaced by the text „The NIL object“.

 ╶─ ╶─ ~size topindex arrayname =

Returns the highest existing index location –no matter if used or not– or 0 if empty.

41

11 Multitool: Array

 ╶─ ╶─ ╶─┬───────┬─
 └─╴ ╶─┘
 ~dimension() arrayname
 dim
num =

If dim is not specified, the number of dimensions is returned, which is 0 for an empty array. If dimension
dim is specified, its size is returned. If that dimension does not exist, 0 is returned.

 ╶─ ╶─ ~items n arrayname =

Returns the number of used index locations (those with an item), which may be 0.

 ╶─ ╶─ ╶─ ╶─ ~hasitem() flag arrayname string =

Using strict comparison == (see page 56), searches for string being an item anywhere in the array. If
YES, 1 is returned, else 0.

─┬──╴ ╶──┬─╴ ╶─ ╶─ ╶─ ╶─
 └─╴ ╶─┘
 ~index() ix arrayname string =
 .nil

Does the same search as method ~hasitem, but returns the index location, if found. Else .nil is returned.
In case of multiple occurrences, the first index location is returned.

─┬──╴ ╶──┬─╴ ╶─ ╶─┬─╴ ╶─┬─
 └─╴ ╶─┘ └─╴ ╶──┘
 ~first
 ~last
 ix arrayname =
 .nil

These methods return the lowest/highest used index location. If all are unused, .nil is returned.

─┬─╴ ╶─┬─╴ ╶─ ╶─┬─╴ ╶─┬─
 └──╴ ╶──┘ └─╴ ╶──┘
 ~firstitem
 ~lastitem
 string arrayname =
 .nil

These methods return the string that is the item of the lowest/highest index location used. If none
exists, .nil is returned.

 ╶─ ╶─ ╶─ ╶─ ~hasindex() flag arrayname ix =

Returns 1 if index location ix is used, else 0.

─┬──╴ ╶──┬─╴ ╶─ ╶─┬─╴ ╶─────┬─╴ ╶─
 └─╴ ╶─┘ └─╴ ╶─┘
 ~next()
 ~previous(
 ix arrayname ixstart =
 .nil

Starting from index location ixstart, the next/previous used location is returned. If in the requested
direction no item exists, .nil is returned. The starting location ix may be beyond the array size. In this
case ~next always returns .nil, while search ~previous starts at the array size.

Copying an Array (Special Cases)

 ╶─ ╶─ ~makearray newarray oldarray =

Returns a one-dimensional array which contains all items from oldarray, keeping the same order.
Unused index locations are not copied.

 ┌─╴ ╶─┐
 ╶─ ╶─ ╶─ ╶─ ╶─┼─────────┼─
 └─╴ ╶─┘
 ~section()
 {end}
 newarray oldarray ix
 count

 = ,

This method requires oldarray to be one-dimensional. It copies index locations,1 including the items
of used locations. The copy starts at index location ix of oldarray, which becomes index location 1 of
newarray. The number of copied index locations is count, which becomes the size of newarray. The
default is all index locations to the end, which also applies if count exceeds this number.

1 The Reference text (p. 258) seems to limit the operation to „items“, but that was not the outcome of my test.

42

11.1 Stable Sorting of Arrays with SORT2

Deleting Data from an Array

 ╶─ ╶─ ~empty arrayname'' =

Deletes all items from the array, changing all index locations to unused status. Returns a null string.

─┬─╴ ╶─┬─╴ ╶─ ╶─ ╶─ ╶─
 └──╴ ╶──┘
 ~delete() string arrayname ix =
 .nil

Index location ix is deleted. If it is in use, the associated item is returned, otherwise .nil is returned. All
locations in the array following the deleted location are moved 1 up. If the index location does not exist,
nothing changes and .nil is returned.

 ┌─╶─ ╶─┐
 ╶─ ╶─ ╶─┴─╴ ╶──┴─ ~remove() string arrayname ix
 < ,
 =

Returns the item at index location ix and removes it from the array. The index location becomes unused,
but is not deleted. If the location is unused, .nil is returned.2

 ╶─ ╶─ ╶─ ╶─ ~removeitem() string arrayname string =

Works the same as ~remove, but searches for an item equal to string to remove it. Strict comparison ==
is used. In case of multiple occurrences, the first item found is removed.

11.1 Stable Sorting of Arrays with SORT2

Elements that compare equal are left untouched by a stable sort algorithm. They keep their exact sequence
from before the sort. This may for example be important when analysing log data.
The external library rgf_util2.rex3 in its function sort2 offers sorting capabilities far beyond the capabil-
ities of the function SysStemSort (page 36) or the method SortWith:

• correct sorting of numbers according to the numeric value, independent of notation,
• sorting by multiple fields within the same item, and
• at the same time combining ascending and descending sequence.

 ╶──╴ ╶──

 +
 + +

 numerical
before < sorted ascending >
sort by character
 10.1 4.2 -7.2
 -0.6 9.5 -0.6
 -7.2 8.8 4.2
 8.8 -0.6 8.8
 10.2 -7.2 9.5
 9.5 10.1 10.1
 4.2 10.2 10.2

The usual character by character sort does not handle signed numbers correctly. Sort2 does this and
also handles non-aligned numbers, as long as they remain within the given field limits. This also applies
to exponential notation, where 960.2 and 9.602E2 have the same value.
A possibly existing (legacy) stem variable can in simple steps (see page 45) be copied into an array, the
array sorted and afterwards copied back to the stem variable.

2 Contrary to what the ooRexx Reference on p. 257 says and the diagram shows, in my tests only a single index location was
accepted, or return code 93.926 would stop the program.

3 Published by Rony G. Flatscher, professor at Wirtschaftsuniversität Wien, originally in 2009.

43

11 Multitool: Array

Array Before Sorting

 + + + +

 +

meteo = .array~new
-- n Name of Station Alti Pressure Temp
-- m mbar degC
-- 1....2....3....4..
meteo[1] = '1 Aigle 381 972.0 10.1'
meteo[2] = '2 Col du St-Bernard 2472 751.8 -0.6'
meteo[3] = '3 Jungfraujoch 3580 654.9 -7.2'
meteo[4] = '4 Koppigen 485 960.3 8.8'
meteo[5] = '5 Neuchatel 485 9.602E2 10.2'
meteo[6] = '6 Waedenswil 485 960.1 9.5'
meteo[7] = '7 Zermatt 1638 834.7 4.2'

The items in array meteo are sorted by station name. This data is from MeteoSwiss.

SORT2 Syntax
Sort2 is called as a function (not as a method), but expects an array as input. Apart from sorting this
array in place, it also returns a new array as result.

 ┌──╶──╴ ╶─────┐
 ╶─ ╶─ ╶─┴─╴ ╶─┴─

 ┌─╴ ╶──┐ ┌─╴ ╶─┐ ┌─╴ ╶─┐
 ╶─ ╶─ ╶─┼──────────┼─╴ ╶─┼───────┼─╴ ╶─┼───────┼─
 └─╴ ╶─┘ └─╴ ╶─┘ ├─╴ ╶─┤
 └─╴ ╶─┘

 sort2()

 ~copy

 newarray datarray sortfield

 {all}
 sortfield: start
 length

 datarray
 datarray

 < ,
 = ,

 'A' 'I'
 , , ,
 'D' 'C'
 'N'
-- By default, also is sorted.
-- If is not to be sorted, append method to its name.

Argument datarray is the array to be sorted. Each item in this array is a line of data (character string).
The next argument is sortfield, which consists of at least 1 and up to 4 comma separated sub-arguments.
These define the sort columns and the sort type. Multiple sortfield arguments are possible, each separated
by a comma.
The first sub-argument of sortfield is start, defining the first column of the sort key. This is followed by
sub-argument length, defining the last column4. Default is to end of item (line).
The next sub-argument controls the order: A (ascending) or D (descending).
The last sub-argument controls the comparison. I ignores upper- and lowercase, while C (case) respects
it, N activates numerical comparison.
After processing, source array datarray is sorted. If it is desired to keep it unsorted, method ~copy can
be appended to the name: datarray~copy. In this case, sort2 uses a temporary array as source.5

Function Sort2 always returns a new array object newarray, which is a copy of the sorted datarray. An
existing array is replaced.
If syntax call sort2 datarray , ... is used (see page 57), system variable RESULT becomes the new array.

Example 1: Sorting by Character

The problem is to sort the items of array meteo in descending order of station altitude. This data is
located in columns 22 to 25 of each item. The sort key therefore starts in column 22 and is 4 columns
long. Sub-argument D creates descending order.
Because the altitude numbers are right aligned and have no sign, it is not necessary to activate numerical
comparison; sorting by character will do. Because the last sub-argument is not used, default mode I is
active. Function call and result are shown below:

4 This is in common with ooRexx functions, but different from sort key specification in SysStemSort and the Hessling-Editor,
which use the last column.

5 This creates an additional array. When sorting large arrays, it should only be used if program logic requires to keep the
unsorted version of datarray active. Keyword DROP can be used to delete an array and free its storage.

44

11.1 Stable Sorting of Arrays with SORT2

 sortmeteo

 sortmeteo

 = sort2(meteo~copy,22,4,'D')

-- created sorted array
-- 3 Jungfraujoch 3580 654.9 -7.2
-- 2 Col du St-Bernard 2472 751.8 -0.6
-- 7 Zermatt 1638 834.7 4.2
-- 4 Koppigen 485 960.3 +8.8
-- 5 Neuchatel 485 9.602E2 10.2
-- 6 Waedenswil 485 960.1 9.5
-- 1 Aigle 381 972.0 10.1

The sort result has been stored in new array sortmeteo. As mentioned above, source array meteo would
also have been sorted. This has been prevented by appending ~copy to its name.
Note that the 3 stations at 485 m have kept their relative order (stable).

Example 2: Numerically Correct Sorting

 +

 drusort ,,28,9,'A','N'

 drusort

 960.1
 9.602E2
 960.3

 = sort2(meteo,22,4,'D')

 -- sorted array
 -- 3 Jungfraujoch 3580 654.9 -7.2
 -- 2 Col du St-Bernard 2472 751.8 -0.6
 -- 7 Zermatt 1638 834.7 4.2
 -- 6 Waedenswil 485 9.5
 -- 5 Neuchatel 485 10.2
 -- 4 Koppigen 485 8.8
 -- 1 Aigle 381 972.0 10.1

In this example, an additional second sort key will sort stations of the same altitude by barometric
pressure ascending. Numerical comparison is required, because the pressure figures are not all aligned
by decimal point and exponential notation is also encountered. The sort key spans columns 28 to 36, or
9 columns long. The returned array is drusort.
Two commas are preceding start column 28. Because further separator commas now follow, all 3
commas of sortfield argument syntax must be present (first comma). The second comma separates the
first sortfield (by altitude) from the next (by pressure).
The result shows the stations with identical altitude (485 m) in the desired ascending order of air
pressures, as if written 960.1, 960.2 and 960.3.

From Stem Variable to Sorted Array Object and Back

In already existing Rexx programs, possibly a lot of code may exist, written to process enumerated stem
variables (page 35). If changes must be kept to a minimum, a possible solution is to make intermediate
use of an array, just to use the new sort capabilities.

 + + + +

 +

/* n Name of Station Alti Pressure degC */
/* 1....2....3....4.. */
zeile.1 = '1 Aigle 381 972.0 10.1'
zeile.2 = '2 Col du St-Bernard 2472 751.8 -0.6'
zeile.3 = '3 Jungfraujoch 3580 654.9 -7.2'
zeile.4 = '4 Koppigen 485 960.3 8.8'
zeile.5 = '5 Neuchatel 485 9.602E2 10.2'
zeile.6 = '6 Waedenswil 485 960.1 9.5'
zeile.7 = '7 Zermatt 1638 834.7 4.2'
zeile.0 = 7

We use the same data from MeteoSwiss, this time coded as stem variable zeile.

 meteo meteo

 meteo[i]

 = .array~new -- create array

 do i=1 to zeile.0 -- index 1...7
 = zeile.i -- copy data to elements
 end i

45

11 Multitool: Array

The loop copies the stem variable into array meteo, which may immediately be sorted with the
capabilities of sort2 described in the previous section.
Once we have the result in array drusort, there are two basic ways to copy the data back into the stem
variable for further processing.

 drusort
 zeile.

 drusort[i]

-- Copy sorted array back to
-- the enumerated stemvariable

-- alternative 1: conventional loop

do i=1 to zeile.0
 zeile.i =
 end i

The above solution is a conventional loop with an iteration variable. It requires to know explicitly the
number of items in the array. As is the convention for enumerated stem variables, this number was
stored in element zeile.0 at the beginning.

 elem
 elem
 elem

 elem
 elem

-- alternative 2: DO ... OVER loop
-- using COUNTER keyword (i = 1, 2, ...)

do counter i over drusort
 zeile.i =
 end

-- alternative 3: DO WITH ... OVER loop
-- using INDEX and ITEM keywords

do with index i item over drusort
 zeile.i =
 end

Alternatives 2 and 3 use the new loop types intended for processing data collections (see page 14). Two
simple variables are needed, their values will be set by ooRexx when it processes item by item in the
loop. The first, which is named elem, holds the item data of the current iteration. The other, which here
is named i, holds the index number processed in the current iteration. It is needed for the correct stem
index. In alternative 2, i is defined via the COUNTER keyword, which increments it on each iteration.
This guarantees consecutive numbering of the stem elements, even if there are unused index locations
in the copied array.
In alternative 3 the ITEM keyword sets i to the currently processed index location. If there are unused
index locations in the array, the corresponding stem variables will remain untouched by the loop code.

Downloading Library rgf_util2.rex

The current version of this library is part of BSF4ooRexx (see page 59). The file is in the top directory
\bsf4oorexx of the installation ZIP file.
Alternatively, the file can directly be downloaded from Sourceforge using the first link of the following
list. Note that 850 is the BSF4ooRexx version number at the time of writing and will change in the
future.
The other three links are documentation provided by Wirtschaftsuniversität Wien.

sourceforge.net/p/bsf4oorexx/code/HEAD/tree/branches/850/bsf4oorexx.dev/bin/rgf_util2.rex

wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_RGF_UTIL2-20100120-refcard.pdf
wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_RGF_UTIL2-20100806-article.pdf
wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_rgf_util2.pdf

Any ooRexx program that wants to use functions from this library needs the following directive, added
at the end(!) of the program file:

::REQUIRES rgf_util2.rex

46

12 Multitool: USE ARG

In place of making 1000 calls to a subprogram, it may be possible to achieve the same result faster by
making only 1 call. The trick is to give the subprogram direct access to the 1000 data items that need to
be processed.
This can be done by using keyword USE ARG, which allows shared access to large data collections
without creating additional copies. This is possible, if the data resides in stem variables or arrays.
The main program uses a stem or array name as a call argument. In the called program, keyword USE
ARG can access the data. Not only the data but also its internal management information is available to
the called program. A simplified process may illustrate the principle:

• A main program creates an array of accounts.
• It calls a subprogram with the array name as argument.
• The subprogram reads the argument with USE ARG. This gives it access to the array.
• The subprogram goes through the array, computes the interest for each account and adds it to the

account.
• When the subprogram ends, control is returned to the main program.
• The main program finds each account updated with the interest.

The subprogram can change data as well as add or delete elements. For arrays, the methods for
handling unused index locations are available. For stem variables, stem.0 has no special function and
non-numerical indexes may be used.

 mainprog.rex

 hanse. , testvar

 mysubprog
 hanse.

 new element created
 NO change to simple variable
 set by RETURN in SUBPROG

-- Program code in
testvar = 'Ostsee'
hanse.1 = 'Bremen'
hanse.2 = 'Hamburg'
hanse.3 = 'Lübeck'
hanse.4 = 'Wismar'
hanse.5 = 'Rostock'
hanse.6 = 'Stralsund'
hanse.7 = 'Greifswald'

call mysubprog

-- After return from the changes it made to
-- stem variable are visible here:

say hanse.77.88 ⇒ Demonstration
say testvar ⇒ Ostsee
say result ⇒ Rückgabe

ooRexx program mainprog.rex uses its stem variable hanse. as an argument when calling program
mysubprog.rex. Separated by a comma, the name of simple variable testvar is transmitted as
second argument.

47

12 Multitool: USE ARG

 mysubprog.rex
 use arg

 mainprog.rex
 hanse. demo.

-- File
 demo. , ordinary

-- The first argument provided by is its stem
-- variable which is named in this subprogram.
-- But both names refer to the same object.
say demo.1 ⇒ Bremen
demo.77.88 = 'Demonstration'

-- On the other hand, changes to a simple variable are
-- not visible to the calling program.
say ordinary ⇒ Ostsee
ordinary = 'abcd'

return 'Rückgabe' -- conventional return of data

Keyword USE ARG in mysubprog is used to access the supplied arguments. It does not need to know
the names used inside the calling program. It simply uses its own. In this example, the name demo. is
used for the stem (first argument) and ordinary for the simple variable (second argument).
All changes, deletions or additions to stem demo. are in reality made to stem hanse. – when control
returns to mainprog, it sees the changes made.
On the other hand, simple variables are read only. The called program sees the value of testvar in its own
variable ordinary. But any changes remain invisible to the calling program.

 arg arg

 use arg use arg

 call myprog -- calling MYPROG without argument

 -- Different treatment when MYPROG expects an argument:

 aparm -- sees a null string
 say aparm ⇒ ''

 bparm -- sees an undefined Variable
 say bparm ⇒ 'BPARM'

If ARG encounters an unused argument, it uses the null string as its value. On the other hand, USE
ARG treats it like an unknown variable (see rules on page 55).
ARG and USE ARG can be used in parallel. They read the same argument string.
USE ARG accepts multiple arguments only if separated by commas. If no name is coded between two
commas, USE ARG ignores that part of the argument string. This allows to use the conventional blank
separated arguments intended for processing by ARG.
Do not try to initialize a stem accessed via USE ARG to a default value (page 38). It creates a new
private object in the called program with the same name as the original stem. This severs the connection
to the stem in the calling program.

12.1 USE ARG and Arrays

According to the documentation, USE ARG supports sharing all types of data collections. The following
example shows code for sharing an array (see page 44) in place of a stem.

 mymainprog.rex

 phonedirectory phonedirectory
 phonedirectory[5]

 phonedirectory

-- Code lines in

 = .array~new -- create array
 = 'this is a string'

call mysubprog

say phonedirectory[5] ⇒ 'changed string'
say result ⇒ '0'

This template of a calling program shows the creation of an empty array. Then an item at index position
5 is defined. On the subprogram call, the plain array name is used. Nothing to indicate this being an
array is needed.

48

12.2 Template for Your Own Library of Functions

 mysubprog.rex-- Code lines in
use arg verzeichnis -- local name of array

if verzeichnis~isA(.array) then nop -- optional: test for array
else return -1 -- not an array

say verzeichnis[5] ⇒ 'this is a string'

verzeichnis[5] = 'changed string'
return 0 -- return value 0 to caller

In the called program, the argument is accessed using name verzeichnis. Due to the sharing of control
information, ooRexx knows it is an array. The ~isA method can be used by the application to test for
the correct object type.1 The contents of item 5 is displayed and then changed.
The sharing of the array follows the same rules as described for the stem variable previously. All
changes to array verzeichnis by the subprogram do really happen in array phonedirectory of the
calling program. Both names reference the same array object.

12.2 Template for Your Own Library of Functions

Usually, an ooRexx program is started using the file name. Over time, more and more useful small
tools are written. This creates a growing number of small program files. To consolidate a number of
programs –written in ooRexx– into a single library, directive ::ROUTINE is the tool of choice.

 mylibrary.rex

 preceding prologue

 ::OPTIONS

 ::ROUTINE PUBLIC cylinder
 ARG USE ARG

 ::ROUTINE PUBLIC cone

 private

 cone
 uprog: uprog
 cone
 uprog cone

 ::ROUTINE PUBLIC pyramid

 ::ROUTINE PUBLIC

 arg1 , arg2 ...

 volume surfacearea ...

 arg1 , arg2 ...

 volume surfacearea ...

 something

 arg1 , arg2 ...

 volume surfacearea ...

 arg1 , arg2 ...

 stringdata

 -- File as template for creating a ooRexx program library:

 -- Rexx program code the first ::DIRECTIVE is called
 -- In this example, no prologue is used.

 -- The first directive here is used to set NUMERIC DIGITS for all routines.
 digits 16 -- available since ooRexx 4.0

 cylinder -- 1. subprogram starts here
 use arg -- read arguments with and/or
 ... -- Rexx code to do the calculations
 return -- result string may contain blanks

 cone -- 2. subprogram
 use arg -- as above
 ...
 number = uprog(abc) -- call of a subprogram (see below)
 ...
 return -- end of main code
 -- label starts a private subprogram
 ... -- which is only visible to
 return -- return of result to

 pyramid -- 3. subprogram
 use arg
 ...
 return

 name -- and so on ...
 use arg
 ...
 return

Regarding the „prologue“ see page 19. Each subprogram in this library begins with a ::ROUTINE
directive and is ended by the next ::ROUTINE or other directive (or by end of file). Option PUBLIC
is needed to make it callable from outside the library. An important property is the isolation of the
routines from each other. Everything between two ::ROUTINE statements is invisible to the others.
This also applies if a routine calls another in the same library.
Internal subprograms used by a routine are identified by a label, like the example uprog: in routine
cone. All variables defined in cone are visible to and changeable by the internal subroutine uprog.

1 For simplicity of the example, an appropriate error handling is not shown.

49

12 Multitool: USE ARG

This has always been Rexx standard for label calls within the same file. Keywords PROCEDURE and
EXPOSE (beyond the scope of this Short Reference) are available to control this.
Internal subprograms of a routine are invisible to the other routines in the library. In the example,
uprog can only be called by cone.

 call

 ::REQUIRES

 argument1 , argument2 ...

 -- Example of using routine PYRAMID residing
 -- in program library MYLIBRARY.REX
 ...

 pyramid

 ...

 -- To use PYRAMID, the calling program
 -- needs the following directive appended to it:
 mylibrary.rex

The above example of calling PYRAMID shows using keyword CALL. Alternatively, it is also posible
to use function syntax:

result = pyramid(argument1,argument2)

In any case, the program must be told which library contains PYRAMID. This is done by adding a
::REQUIRES directive at the end of the program file.
Extension .rex may be omitted. Since February 2020, ooRexx automatically searches for a file with
extension .cls and then .rex.

50

13 Classic Style Versus Object Oriented

This chapter compares a classic style solution of sorting an array with the object oriented way of coding.
Both use method ~sortwith.
The data to be sorted is in file hanse.dat with the following layout:

0421 Bremen
040 Hamburg
0451 Lübeck
03841 Wismar
0381 Rostock
03831 Stralsund
03834 Greifswald

Area codes start in column 1 and are, as can bee seen, up to 5 characters long. The town names start in
column 7 and the longest has 10 characters. Both are left adjusted.

13.1 Using SORTWITH in a Classic Program

When starting the program, the desired sort (by area code or town name) is the only argument:

arg a1 . -- Sort: A by area code or T by town
select case a1
when 'A' then do
 start = 1
 len = 5
 end
when 'T' then do
 start = 7
 len = 10
 end
otherwise
 say 'This program expects A or T as argument.'
 exit 24
 end

Dependent on argument A[rea code] or T[own name], the sort columns are assigned. Town names
shorter that 10 characters pose no problem.

infile = .stream~new{'hanse.dat'} -- the file stream to read ...
tabelle = infile~arrayin -- Array TABELLE receives

Method arrayin creates array tabelle and copies the file lines to it.

 tabelle~sortwith(.ColumnComparator~new(start,len))

This is the sort instruction. First an object of class ColumnComparator is created, which will use the
columns defined in variables start und len. This object is then used by method SortWith to perform
sorting of array tabelle.

 idx tabelle
 idx
do over
 say
 end

To write the result to the screen using the say keyword, a do ... over loop goes through all
used items of array tabelle. In place of idx any convenient variable name could be used.

51

13 Classic Style Versus Object Oriented

0381 Rostock
03831 Stralsund
03834 Greifswald
03841 Wismar
040 Hamburg
0421 Bremen
0451 Lübeck

This is the screen output of the above do ... over loop.

 tabelle~items
 tabelle[i]

-- alternative: conventional loop
do i=1 for
 say
 end

Altenatively this conventional loop with an iteration variable could be used. Each item is accessed using
the [] syntax (without period, because this is an array, not a stem variable). Method items returns
the array size. Because we know there are no unused items, this is the number of loop iterations.
This concludes the classic style example.

Other Sort Sequence

tabelle~sortwith(.CaselessColumnComparator~new(start,lenght))

If upper- and lowercase letters are to be treated as equal, the Caseless version of the sorting class is
used. As already mentioned, this recognizes only the 26 letters of the English alphabet.

 ╶──╴ ╶── .InvertingComparator~new() myComparatorClass~new(args)
-- To invert sorting result use:
--

tabelle~sortwith(.InvertingComparator~new(.ColumnComparator~new(start,length)))

Class InvertingComparator changes the sorting sequence from ascending to descending. It ex-
pects the name of the class which will do the actual sort as argument of its new method.

13.2 Object Oriented Use of SORTWITH

This section1 is expressly not intended as a "how to". It is limited by what I learned when trying out
object oriented code.
First, a number of object names have to be defined. Each line in hanse.dat contains 2 fields (at-
tributes). They will be called areacod and townname here. We also need a name for the resulting
records structure and choose hansesort for this.

Setting Up a Class File

To this end, we create a fittingly named file oohanse.cls :

 hansesort::class public inherit comparable

This defines class hansesort as being useable by any program (public). Because its purpose is
sorting, it inherits the properties of predefined class comparable.

 areacod
 townname

 areacod townname
 areacod, townname

::attribute
::attribute

::method init
 expose
 use strict arg

1 It is derived from ooRexx sample program sortComposite.rex.

52

13.2 Object Oriented Use of SORTWITH

The ::ATTRIBUTE directives define the data fields in structure hansesort. This automatically triggers
in the background the creation of a method with the same name as the attribute for read and write
access.
When defining a data object, a method with the the prescribed name init must be defined. Use of
keyword expose is required here –and for all other methods– to define, which fields (attributes) this
methode may read or change. All other variables inside the method remain invisible to the outside
world. To create a record structure as defined in the hansesort class, init of course needs to
access all its fields (attributes). Therefore, keyword expose has a complete, blank separated list of the
fields defined through ::ATTRIBUTE directives.
When called, a method normally receives arguments. Instruction use strict arg defines how the
arguments are parsed into attributes. Again, for our sort we need a list of all defined attributes. This
time a comma separated list is required. Option strict ensures that the correct number of arguments
is present.

::method string -- method STRING of class HANSESORT
 expose areacod townname -- converts objects ...
 return '>'areacod' -- 'townname'<' -- into a string for SAY

The record format (the class) hansesort is a structure, not a simple character string. If a structure is
encountered by string oriented processes, like keyword say, ooRexx uses a default method to convert
the data into a chracter string. The alternative is to define a method named string for the class.
Here a very trivial example is used which inserts some special characters to make obvious that method
string of class hansesort is active.

Classes for Sorting

For each sorting function (by area code and by town name) a subclass of predefined class comparator
must be defined. Each class needs a method with the predefined name comparewhich controls the
sort.

 AREAsorting::class public subclass comparator
::method compare
use strict arg lllll, rrrrr
return lllll~areacod~compareto(rrrrr~areacod)

Class AREAsorting sorts by contents of field (attribute) areacod. Method compare receives as
arguments two consecutive values from field areacod übergeben. For this example, the variables
lllll and rrrrr are used. Using the builtin comparison method compareto the rather involved
expression after return returns value 1, 0 or -1. This way method compare tells ooRexx whether
relation larger, equal oder smaller applies to comparing pair lllll and rrrrr applies.

 TOWNsorting::class public subclass comparator
::method compare
use strict arg lllll, rrrrr
return lllll~townname~compareto(rrrrr~townname)

Class TOWNsorting functions the same way, but uses field (attribute) townname. For any additional
sorting field, a corresponding comparator subclass with its method compare is needed.

return -lllll~townname~compareto(rrrrr~townname)

This line is not present in the class file. It shows how to invert the sort order. The minus sign at the
beginning of the expression after return negates the results (-1, 0, 1) to (1, 0, -1).
This way, two additional classes could be easily coded for descending sort by area code or town name.
This completes class file oohanse.cls and we can code the program to use it.

53

13 Classic Style Versus Object Oriented

ooRexx Code Using the Sorting Classes

The program file is named oohanse.rex:

myfile = 'hanse.dat' -- name of data file
mytable = .array~new -- create empty array MYTABLE

These two lines are the same as in the classic example of page 51.

 mytable~append(.hansesort~new(afield,tfield))

do i=1 while lines(myfile)
 myline = linein(myfile) -- read line and ...
 parse var myline 1 afield 7 tfield -- parse into 2 fields
 -- uses class HANSESORT
 end i

Writing the data to array mytable is done using class hansesort to create objects as defined.
Because this class expects 2 arguments, each file record has to be parsed into 2 fields (attributes).
Number and sequence of attributes in the arguments passed to methode new must be identical to the
actually used method init of class hansesort. In place of variables afield and tfield any
names may be used.

arg a1 . -- A or T for sorting by area code or town
select case a1
when 'A' then mytable~sortwith(.AREAsorting~new)
when 'T' then mytable~sortwith(.TOWNsorting~new)
otherwise
 say 'This program expects A or T as argument.'
 exit 24
 end

This is the sorting step. Depending on using argument A or T when starting the program, the appropri-
ate subclass is used by method sortWith.

 idx mytable
 idx
do over
 say -- SAY implicitly uses the STRING method of HANSESORT
 end

The loop to write the result to the screen is the same as in the classic example.

::REQUIRES oohanse.cls

The ::REQUIRES directive at the end of the program tells ooRexx where to find the class definitions.
Since February 2020 ooRexx automatically searches for files with extension .cls if none is given.
An alternative would be to copy the complete file oohanse.cls in place of the ::REQUIRES directive
into the program file. In this case the the public options in the class definitions were not required.
And it would make the class definitions inaccessible to other programs.

>0381 -- Rostock<
>03831 -- Stralsund<
>03834 -- Greifswald<
>03841 -- Wismar<
>040 -- Hamburg<
>0421 -- Bremen<
>0451 -- Lübeck<

Independent of placing the class definitions, the screen output –sorted by area code– will be as shown
above.
The items in array tabelle are now objects as defined in class hansesort. Our method string
has done the preprocessing for keyword SAY as the additional special characters show.

Comparison of Effort
Documenting the classic solution in section 13.1 uses 265 mm of vertical text area. Its object oriented
alternative in section 13.2 uses 515 mm, or 1.94 times the space.

54

14 Some ooRexx Fundamentals

14.1 How Code Lines Are Processed

Everything not included in quotes (simple or double) is folded to UPPERCASE before it is interpreted.
Text wordpos as well as WordPos is seen as WORDPOS by ooRexx. Mixed case solely improves
readability for the human eye.
The steps of interpreting a code line are as follows:

 timezone = 'Daylight Saving Time'

 say 'It is' now time() "hours " timezone

 SAY NOW TIME() TIMEZONE

 15:19:54 Daylight Saving Time

 It is NOW 15:19:54 hours Daylight Saving Time

 -- The following variable exists:

 -- Line of code in the program file:

 -- 1. All letters outside of quotes are folded to UPPERCASE
 -- und multiple blanks are reduced to 1 blank:
 'It is' "hours "

 -- 2. Function calls and variables are replaced by their (return-)values:
 SAY 'It is' NOW "hours "

 -- 3. Keyword instructions are executed. SAY writes to the screen:

Step by step:

• SAY is recognized as an ooRexx keyword. It writes data to the screen.
• Character string It is remains unchanged, because it is included in single quotes.
• NOW is not recognized as a variable or something else with a meaning to ooRexx. It remains in

place while the number of blanks, separating it from its neighbours, is reduced to 1.
• TIME() is the name of a builtin function. The call is replaced by the character string returned by

this function.
• Character string hours and the three blanks following it are enclosed in double quotes and remain

unchanged.
• TIMEZONE is recognized as a variable. It is replaced by its value Daylight Saving Time. Again,

the number of blanks separating it from its neighbours, is reduced to 1.
• Consequently, in the output, word hours is followed by 4 blanks: 3 inside the quoted string, plus

the single separator blank.

Concatenation

 ││

filename = 'doreadme'
extenta = 'txt'
extentb = '.dat'

say filepath'.abc' ⇒ doreadme.abc -- variable followed by string
say filepath'.'extenta ⇒ doreadme.txt -- string between variables
say filepath extentb ⇒ doreadme.dat -- two variables
say 'DAT'random()extentb ⇒ DAT152.dat -- string, function call, variable

If blanks are unwanted, quoted character strings and variables may touch each other. The same applies
to quoted strings and function calls. To concatenate the values of two or more variables or appending a
function call to a variable, the operator || is used.
A variable name which immediately follows a quoted string, should not be x or b to prevent ooRexx
from confusing it with a hex- or binary string (see page 33).

55

14 Some ooRexx Fundamentals

Line Continuation

 ,

 ; ;

say 'This text'
 'is logically placed in a single line.'

say 'This is' say 'logically divided' say 'into 3 lines.'

A comma as the last character of a line is always interpreted as a continuation character. It may appear
at any position where a blank is allowed. The resulting logical line has a blank at the comma position.
A semicolon has the opposite effect and acts as an end of line character. Everything following the
semicolon is considered a new line by ooRexx.

Comments

 /* REXX on mainframe, OS/2 and DOS required programs to start with a comment line */
 /*
 a comment may span
 multiple lines
 */
 /* in the middle of a code line */
 -- (double hyphen) is a line comment operator introduced with ooRexx 3.0
 -- makes the rest of the line a comment

 /* comment within comment is possible, if complete */

 say 'Today is' date() time()

 say 'Heute ist der' date()

The sample programs of the ooRexx installation have the string #!/usr/bin/env rexx as first line.
This is an instruction for running on a Unix system. It is ignored on Windows.

Ordinary and Strict Comparison Operators

Conditional terms using these operators1 compare return the comparison result either as 0 for false or 1
for true. They are used with keywords if, when, while, until.

 strict comparison operators
 << <<= == >>= >> \==
 comparison operators
 < <= = >= > \=

If both terms are valid numbers, 2 a numeric comparison is done. Otherwise a string comparison is
done. Leading blanks3 are ignored. The shorter string is padded on the right with blanks.
In a strict comparison, byte by byte is examined. No padding is done. Two strings of different length
are not equal; 1 and 1.0 are not equal. The keyword select case, introduced in ooRexx 5.0, always uses
strict == comparisons on the when instructions (see example on page 51).
Comparisons may be logically combined using & (AND), | (OR) and && (XOR). In any case, all
comparisons of a conditional statement are processed.

 , , resultif datatype(,'N') result > 0 result < 100 then ...

Since ooRexx 3.2, the comma as conditional AND can be used. The leftmost term is processed first. Only
if it returns 1, the next comparison is processed. Result 0 skips all remaining terms and returns 0.
For example, a test for a valid number could be first. If it fails, runtime errors –triggered if a following
term would encounter a non-numerical value– are avoided.

 if = 1 if
 if = 0 if
 lines(myfile) then ... -- equivalent: lines(myfile) then ...
 lines(myfile) then ... -- equivalent: \lines(myfile) then ...

If a function returns –or a variable has a value of– either 0 or 1, a = comparison need not be coded after
if, when, while, until. Character \ is the logical negation operator,. reversing 0 to 1 and 1 to 0.

1 In addition to the shown 12 operators, another 12 formats with identical function exist. They are not shown here.
2 Be careful. Some hexadecimal strings, for example 0E01, are treated as valid numbers by ooRexx, because: 0E01 = 0 · 101 = 0.

Therefore, hexadecimal strings should be compared by a strict operator.
3 Actually, also tab characters; see xrange BLANK on page 9.

56

14.2 Branching to Subprograms

14.2 Branching to Subprograms

Processing as if Entered in the Command Line

 ╶─┬─────────────┬─
 └─╴ ╶─┘
 windowscmd
 arguments
 -- variable RC will hold returncode if set

'dir *.rex' ⇒ lists all *.rex files of the current directory
'uprog' ⇒ starts program UPROG.REX if in search path

If ooRexx, after interpreting a line of code, encounters an unrecognized string at the beginning of the
line, this line is considered to be a Windows command and is passed on to the operating system for
execution. Windows treats it as if entered on the command line.
Windows uses the search order: system command, .EXE file, .BAT file, .CMD file and finally .REX file.
If nothing is found, an error message appears and the program continues.
An ooRexx program may use the keyword exit to report back a number to the calling program. This
sets special variable RC (return code) in the calling ooRexx program. If nothing follows exit, RC is set
to 0, meaning no error. Otherwise, the number signals the type of error. A selection of return codes as
used by Windows is shown on page 59.

Function Call

 ╶─┬─────────────┬─
 └─╴ ╶─┘

 ╶─┬─────────────┬─
 └─╴ ╶─┘

 uprog()

 'UPROG'()

 returnval
 arguments

 returnval
 arguments

 = -- UPROG must return data

 = -- skips search for label UPROG:

A function type of call is recognized by a name being immediately followed by a (. Commas are used to
logically separate argument strings from each other. See the syntax example on page 60 (top).
To be callable as function, the subprogram must use the keyword return to return a string –which my
be null– to the calling program. Otherwise a runtime error stops the program.
In the calling program, the function is replaced by the returned string. Therefore, the line must have
code that processes the returned data. For example, the function call is on the right hand side of an
assignment statement. Otherwise, the returned data, unrecognized by ooRexx, will be handed over to
Windows as a command string.

Keyword CALL

 ╶─┬─────────────┬─
 └─╴ ╶─┘

 ╶─┬─────────────┬─
 └─╴ ╶─┘

 ╶─┬─────────────┬─
 └─╴ ╶─┘

 call uprog return

 call 'UPROG'

 call (work)

 arguments

 arguments

 arguments

 -- if is used, variable RESULT is set

 -- skips search for label UPROG:

 work = 'UPROG'
 -- subprogram name held in variable

Using keyword call, the called subprogram need not return a string. If it does, keyword return is used.
The calling program finds this data in special variable RESULT. The comma may be used as argument
separator. Make sure to code something after the last comma, to prevent it from being treated as line
continuation.
Only the keyword call offers a way to use a variable holding the subprogram name.

Method Call

 ╶─┬─────────────┬─
 └─╴ ╶─┘
 object~method()

 object~method ()

 arguments

 -- if no arguments used, may be omitted

57

14 Some ooRexx Fundamentals

A method is identified by a tilde ~ appending it to the object it works on (its first argument). Additional
arguments, if used, are coded in function syntax. From a classic coding point of view, methods show a
combination of the previous call types:

• In common with function calls, method calls are replaced in the code by the data they return.
• Quite contrary to function calls, no harm is done if a method call is alone on a code line. Any

returned „orphan“ data is ignored by ooRexx. But in common with CALL, the returned data is
then available as variable RESULT.

• The () may be omitted if no arguments are used.

The search sequence depends on the currently active hierarchy of classes.

14.3 ooRexx Search Sequence for Subprograms

A subprogram to be called may be a part of ooRexx, an external program written in ooRexx or residing
in a library. Apart from the condition that functions must return data, there is a free choice of using a
function call or the CALL syntax. In both cases:

uprog()
call uprog

the search sequence is identical.4 As soon as the first of the following condition is true, processing
branches to that code:

• Does a label uprog: exist in the current program file? This step is skipped, if the name is included
in single or double quotes.

• Is uprog a builtin part of ooRexx? Which are:

– functions implemented in the interpreter5 and
– the Rx... and Sys... functions from library rexxutil.dll that comes with ooRexx.6

• Does a directive ::ROUTINE uprog exist in the current program file?
• Exists, in one of the files listed in ::REQUIRES directives, a directive ::ROUTINE uprog PUBLIC?
• Does in Rexx Macrospace, among the files loaded with Before option, a program named uprog

exist?
• Does name uprog exist in an external function library (DLL file) that was loaded via directive

::REQUIRES name LIBRARY?
• Does a file named uprog.rex exist ...

– in the current directory, or
– in a directory of the PATH environment variable – which by default includes the ooRexx

installation directory?

• Does in Rexx Macrospace, among the files loaded with After option, a program named uprog exist?
• ooRexx stops and reports: Error 43: Could not find Routine UPROG

What is a Rexx Macrospace?

Rexx programs can be permanently loaded into RAM storage by the operating system. This saves
disk access operations. The necessary functions (SysAddMacroSpace and others) are part of the Rexx
Utilities.
This method has its origins on the mainframe, where, known as Nucleus Extension, it was an extremely
effective speed-up. On the other hand, ooRexx and Notebooks nowadays have become very fast even
without this trick. Therefore I have never tried it in practice.

4 For better redability the internal folding of names to uppercase is not shown here.
5 Chapter 7.4 „Built-in Functions“ in file rexxref.pdf
6 Chapter 8 „Rexx Utilities“ in file rexxref.pdf

58

14.4 Some Windows Returncodes

What is an External Function Package?

ooRexx offers two application programming interfaces to programs written in C (older) or C++ (current)
and residing in a DLL. These then can be called like any other function to process data. To include a
DLL in the search, directive ::REQUIRES name LIBRARY is used. An example is rxmath.dll (page 18).

What is BSF4ooRexx?

This is the name of a tool developed since ooRexx 4.1 by professor Rony G. Flatscher of Wirtschaftsuniver-
sität Wien, and many contributors, which provides a very powerful interface to the Java environment
in both directions. It makes everything available in Java, for example a graphical user interface, callable
from ooRexx programs.
The most current BSF4ooRexx version can be found at link:
sourceforge.net/projects/bsf4oorexx/files/GA

14.4 Some Windows Returncodes

 ╶─ ╶─ SysGetErrorText() rc

-- SysGetErrorText(5) ⇒ Access denied

If Windows cannot serve a request, the reason is reported using a numerical return code. The above
function returns a short message, indicating the reason of the failure. A selection of some error codes
and texts follows:

 2 File specified not found
 3 Path specified not found
 4 Cannot open the file
 5 Access denied
 13 Invalid data
8, 14 Not enough storage for the command/operation
 15 Cannot find the specified drive
 16 Directory cannot be removed
 17 System cannot move file to a different disk drive
 18 No more files
 19 Write protected media
 23 Data error (CRC-check)
 26 Specified disk cannot be accessed
 32 No access, file is being used by other process
 36 Too many files opened
 39 Disk is full
 183 A file with this name already exists

ooRexx in case of errors uses its own, different return codes. The texts can be obtained the same way,
using function ErrorText(). Appendix C of rexxref.pdf) contains an extensive printed list.

59

15 How to Read the Syntax Diagrams

In the diagrams, an italic font represents variables, numbers, character strings. The latter are included by
double " or single ’ quotes. Numbers need no quotes.

 ┌─╴ ╶─┐
 ╶──╴ ╶──╴ ╶──┬──────────┬──╴ ╶──┼───────────┼──
 └──╴ ╶──┘ └──╴ ╶───┘
 function()
 default
 arg1
 arg2 arg3

 , ,

This represents a function that expects 3 comma separated arguments (also called parameters). In this
example, arg1 must be filled in, while the other two may be omitted.
The value above the main line shows what is used as default if the 3rd argument is omitted.
For clarity, any separating commas are always shown. As a rule, all commas to the right of the last used
argument may be omitted.

 ╶──┬──╴ ╶──┬──
 ├──╴ ╶─┤
 ├──╴ ╶────┤
 └──╴ ╶──────┘

 function()

 ' "

 choice1
 filename -- name of variable
 'ABC' -- character string in or
 123 -- numeric needs no quotes

A „ladder“ shows a selection of possible arguments. One must be used; there is no default.
A quoted string may be used in place of a variable if its simpler or more readable. The quotes make sure
that the character string ABC is used, even if a variable ABC with an unknown value exists. Particularly
with short strings, overlooked variables are a typical source of unexpected behaviour.

 ┌──╴ ╶──────┐
 ╶──┼───────────────┼──
 └──╴ ╶──┘
 function()
 {end}

 selection

In several cases the actual default depends on the data and is not a definite value. Then a short symbolic
word included in { } is used. For example {end} stands for „to the end of the string“.

 ╶──╴ ╶──

 ╶──╴ ╶──

 ╶──╴ ╶──

 functionA()

 functionB()

 functionC()

 rc parm

 flag parm

 pos parm n num count ix

 =

 =

 = -- or: , , ,

Assignment statement layout is used for function and method syntax diagrams, when it is important to
indicate the kind of returned data, for example:
A return code rc will be 0 if no error occurred. Any other number indicates the type of error.
If flag represents the returned data, the possible values are 1 for true or 0 for false. In some cases -1 is
possible.
A return name of pos, n, num, count or ix indicates a positive whole number or zero, representing a
length, counter, number or an array index location (the latter never 0).

 ┌─╶───╶───────┐
 ╶─┴───╴ ╶───┴─ function() value
 < ,

This function accepts more than one argument string, separated by commas.

60

Index

Special Characters
, (argument separator) – 57, 60
, (conditional AND) – 56
, (line continuation) – 56
- - comment – 56
.CaselessColumnComparator – 52
.ColumnComparator – 51
.InvertingComparator – 52
.array – 40
.my.rxm~... – 20, 21
.nil – 41
.stream – 27, 29
::OPTIONS – 49
::REQUIRES – 18, 19, 46, 50, 54, 58
::ROUTINE – 49, 58
::attribute – 52
::class – 52
::method – 52
; (end of line) – 56
& AND – 56
&& XOR – 56
\(negation) – 56
|OR – 56
|| concatenation – 55

A
~abbrev – 5
abbrev() – 5
abs() – 17
address with – 36
~append – 41
arg – 48
~arrayin – 28
~arrayout – 29
attrib (Windows) – 25

B
b2x() – 33, 34
bitand() – 34
bitor() – 34
bitxor() – 34
blanks in path names – 25, 37
BSF4ooRexx – 46, 59
by – 12

C
c2d() – 33, 34
c2x() – 33, 34

call – 47, 48, 57
caseless – 3
~caselessabbrev – 5
~caselesschangestr – 8
~caselesscompare – 5
~caselesscompareTO – 5
~caselesscontains – 4
~caselesscontainsWord – 10
~caselesscountstr – 4
~caselessendswith – 3
~caselesslastpos – 5
~caselessmatch – 3
~caselessmatchchar – 3
~caselesspos – 4
~caselessstartswith – 3
~caselesswordpos – 10
~ceiling – 17
center() – 6
~changestr – 8
changestr() – 8
~charin – 28, 31
charin() – 31
~charout – 32
charout() – 32
~chars – 28, 31
chars() – 31
~close – 28, 29
~compare – 5
compare() – 5
~compareTO – 5
comparison operators – 56
compound variable – 35
conditional terms – 56
~contains – 4
~containsWord – 10
copies() – 6
counter (do) – 15
~countstr – 4
countstr() – 4
current directory – 24

D
d2c() – 33, 34
d2x() – 33, 34
datatype() – 3
date() – 23
~delete – 43
delstr – 9

61

Index

delword() – 11
digits() – 17
~dimension – 42
do – 12
do forever – 12
do over – 14
do with – 14

E
~empty – 43
~endswith – 3
ErrorText() – 59

F
filespec() – 25
~fill – 41
~first – 42
~firstitem – 42
~floor – 17
for – 12, 14
format() – 18

H
~hasindex – 42
~hasitem – 42

I
if – 56
~index – 42
~insert – 41
insert() – 9
~isA – 40, 49
~items – 42
iterate – 15

L
label (do end) – 13
label (do) – 15
~last – 42
~lastitem – 42
~lastpos – 5
lastpos() – 5
leave – 12, 15
left() – 6
length() – 3
~linein – 30
linein() – 30
~lineout – 31
lineout() – 31
~lines – 28, 30
lines() – 30
logical operators – 56
loop – 12
~lower – 8
lower() – 8

M
~makearray – 28, 42
~match – 3
~matchchar – 3
max() – 17
min() – 17
~modulo – 17

N
~next – 42
numeric digits – 16

O
~of – 41
~open – 27, 29
overlay() – 8

P
parse value with – 7
parse var – 7
path names with blanks – 25, 37
~pos – 4
pos() – 4
~position – 28
~previous – 42
prologue – 19, 49

Q
qualify() – 25

R
RC – 57
~remove – 43
~removeitem – 43
~replaceAT – 8
RESULT – 57, 58
return – 48, 49, 57
reverse() – 8
rexxutil.dll – 58
rgf_util2.rex – 43, 46
right() – 6
Rosettacode – 21
RxCalc...() – 18, 19
rxm...() – 21
rxm.cls – 19, 21
rxmath.dll – 18

S
say – 55
screen output – 36
~section – 42
~seek – 28
select case – 51, 54, 56
sign() – 17
~size – 41
sort (not stable) – 36
sort (stable) – 43

62

Index

sort2 – 44
sort2() – 44
~sortwith – 51
space() – 11
~startswith – 3
STDERR – 36
STDOUT – 36
stem variable – 35
stream() – 32
strip() – 11
subchar() – 6
substr() – 6
subword() – 11
SysFileCopy() – 24
SysFileDelete() – 24
SysFileExists – 24
SysFileMove() – 24
SysFileTree() – 26
SysGetErrorText() – 59
SysGetLongPathName() – 25
SysGetShortPathName() – 25
SysIsFile() – 24
SysIsFileDirectory() – 25
SysMkDir() – 25
SysRmDir() – 25
SysStemCopy() – 36
SysStemDelete() – 36
SysStemInsert() – 36
SysStemSort() – 36

T
time() – 22
to – 12
translate() – 7
trunc() – 18

U
until – 13
~upper – 8
upper() – 8
use arg – 47, 48

V
verify() – 4

W
while – 13
word() – 11
wordindex() – 10
wordlength() – 10
~wordpos – 10
wordpos() – 10
words – 10

X
x2b() – 33, 34
x2c() – 33, 34

x2d() – 33, 34
xrange() – 9

63

Contents

1 Character Strings 3

2 Word Strings 10

3 Program Loops 12

4 Arithmetic 16

5 Time and Date 22

6 Managing Files and Directories 24

7 Read and Write Files (New) 27

8 Read and Write Files (Conventional) 30

9 Bits and Bytes 33

10 Multitool: Stem Variable 35

11 Multitool: Array 40

12 Multitool: USE ARG 47

13 Classic Style Versus Object Oriented 51

14 Some ooRexx Fundamentals 55

15 How to Read the Syntax Diagrams 60

64

